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Abstract 

AI-powered coding assistants such as OpenAI Codex, Claude Code, GitHub Copilot, and 

similar tools are increasingly embedded in everyday software development workflows. 

While these systems can improve productivity, they also introduce a new class of 

governance and security challenges. Once source code leaves an organization via (for 

example) exfiltration, contractor access, or personal devices, organizations lack reliable 

visibility into whether and when that code is subsequently analyzed by cloud AI providers. 

Existing solutions emphasize client-side enforcement approaches: IDE extensions, browser 

controls, network proxies, lifecycle hooks, and endpoint agents. However, these measures 

can be bypassed and provide no visibility into external attackers who paste stolen 

repositories into AI tools outside the organization’s perimeter. 

We propose using Husn Canaries, a centralized detection and policy service in which 

organizations register hard-to-notice patterns already present in their codebases (e.g., 

tokens or comments, regular expressions, and intentionally placed signatures). Participating 

AI providers call the Husn API during code indexing and request handling. When Husn 

identifies pattern matches, it returns policy decisions (e.g., allow with logging, require 

approval, or block) and emits tamper-resistant alerts back to the organization. 

Our contributions are as follows: 

• A threat model for AI coding assistant misuse that covers internal developers, 

external contractors, and external attackers operating with stolen code. 

• The design of a provider-side, pattern-based architecture that detects AI usage on 

sensitive code regardless of client configuration or user identity. 

• A working proof-of-concept implementation using the Model Context Protocol (MCP) 

and Claude Code, demonstrating real-time enforcement and alerting. 

• A discussion of limitations, security properties, and deployment considerations for 

multi-provider adoption. 

By shifting detection to AI providers and leveraging hard-to-remove in-code patterns, Husn 

Canaries turns the AI ecosystem into a distributed early-warning surface for sensitive code. 

A video demonstration of this concept can be found here: 

https://www.youtube.com/watch?v=AtWB6DzwRVk.  

https://www.youtube.com/watch?v=AtWB6DzwRVk
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Introduction 

AI coding assistants increasingly support software authoring, review, and maintenance by 

providing context-aware suggestions, refactoring assistance, and automated test 

generation. Studies report significant productivity gains for developers, particularly when 

working with unfamiliar codebases or languages [1–4]. Commercial tools such as Claude 

Code [5] and GitHub Copilot [6] are now widely integrated into modern development 

workflows. 

At the same time, these tools introduce governance and security challenges that existing 

controls are poorly equipped to address: 

• Internal governance: Security teams often lack a clear view of how, where, and by 

whom AI coding assistants are used on sensitive repositories. Different teams may 

use different tools and accounts (corporate and personal), making it difficult to 

demonstrate compliance with regulatory requirements (e.g., HIPAA, SOC2, PCI-

DSS). 

• External threats: Once source code is stolen or leaked, adversaries can paste 

entire repositories into AI tools to accelerate vulnerability discovery, perform variant 

analysis, and reconstruct architecture diagrams. Organizations have no visibility into 

this activity and no reliable way to detect that their code is being analyzed. 

• Enforcing “no AI” zones: Some repositories must not be analyzed by AI at all (e.g., 

highly regulated code, cryptographic implementations, or embargoed IP). Today, 

enforcement typically relies on internal policy and weak client-side controls. Once the 

code leaves the environment, these guarantees do not hold. 

These challenges share a common root: governance is typically implemented at the client 

(e.g., IDE plugins, browsers, proxies) rather than at the provider where analysis actually 

occurs. 

The Client-Side Problem 
Organizations commonly deploy a combination of the following: 

• IDE plugins or configuration files that disable specific AI features for certain projects. 

• Browser controls or URL filtering to limit access to AI web interfaces. 

• Network proxies that block access to unapproved AI endpoints. 

• Single sign-on (SSO) or data loss prevention (DLP) tools that monitor internal traffic. 

These approaches share several weaknesses: 

• They assume the user is on a managed device and network. 

• They cannot reliably see or control activity performed on personal machines, home 

networks, or accounts outside the organization. 
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• They provide no visibility into external attackers who have obtained code through 

breaches, insider threats, or misconfigurations and are using AI tooling elsewhere. 

• They rely on users not deliberately circumventing controls (e.g., by copy-pasting into 

a browser window on a personal laptop). 

In short, client-side controls can be useful for hygiene but are insufficient as a security 

boundary. The only place where AI analysis of code necessarily passes is at the AI provider 

itself. 

Contributions 
This paper introduces Husn Canaries as a defense-in-depth mechanism for AI coding 

assistant governance. Our main contributions are: 

• Threat model: We formalize a threat model for AI coding assistant misuse 

encompassing internal developers, external contractors, and external attackers in 

possession of stolen code. 

• Architecture: We present Husn Canaries, a provider-side, pattern-based detection 

service that allows organizations to register hard-to-notice code patterns and receive 

alerts and policy enforcement when those patterns appear in AI analysis. 

• Prototype: We implement a proof-of-concept integration with Claude Code via MCP, 

including a Husn server, an organizational dashboard, a backing data store, and 

example honeypot patterns embedded in a demo project. 

• Evaluation: We analyze security properties, bypass resistance, and limitations, and 

we outline future directions such as semantic matching and cross-provider 

standards. 

Threat Model 

We consider a typical enterprise that owns one or more source-code repositories and 

permits some forms of AI-assisted development. The goal is to detect and govern AI usage 

on code assets that the organization deems sensitive. 

Adversary Models 
We consider four primary adversary types: 

1. Internal developers: Full-time employees with authorized access to code 

repositories. They may intentionally or unintentionally use AI tools on code that is 

subject to stricter governance than their day-to-day workflow reflects. 

2. External contractors: Third parties who are temporarily granted access to specific 

repositories. After their contract ends, they may retain local copies and continue to 

use AI tools on that code, outside organizational controls. 
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3. External attackers: Adversaries who obtain code through data breaches, credential 

theft, misconfigured object storage, or leaked backups. They may use AI tools to 

rapidly triage the codebase, identify weaknesses, and plan exploitation. 

4. Unauthorized recipients: Any party (e.g., former employees, partners, or recipients 

of mistakenly shared archives) who was not intended to have long-term analysis 

rights but nonetheless has a copy of the code. 

Key insight: Internal threats (1 and 2) may be partially mitigated through endpoint and 

network controls, but external threats (3 and 4) operate entirely outside the organization’s 

infrastructure. The only common observation point is within AI providers when code is 

submitted for analysis. 

Requirements 
An effective governance mechanism for AI coding assistants should satisfy the following 

requirements: 

1. Bypass resistance: Security should not depend on specific client configurations. 

Users should not be able to evade detection simply by switching devices, networks, 

or client applications. 

2. Universal coverage: The mechanism should apply across IDE plugins, web 

interfaces, CLIs, and direct API usage within participating AI providers. 

3. External threat detection: The system must detect usage by actors outside the 

organization, including attackers and former contractors using personal accounts and 

devices. 

4. Provider-agnostic design: Patterns registered by the organization should be usable 

across multiple AI providers with minimal integration work per provider. 

5. Low friction for providers: Integration should be implementable as a small number 

of API calls in existing indexing and request-handling pipelines, without requiring 

providers to deploy new AI models. 

6. Privacy and isolation: Providers should not learn the full details of registered 

patterns beyond what is necessary for matching, and patterns should not be exposed 

to end users in a way that would allow easy evasion. 

7. Actionable outputs: When matches occur, organizations should receive enough 

context (e.g., pattern identifiers, file paths, and timestamps) to triage incidents and 

respond. 

Husn Canaries Design 

Core Concept 
Husn Canaries is a centralized detection and policy service that sits between organizations 

and AI providers. Its operation is conceptually simple: 
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1. Organizations register a set of canary patterns that are present in their codebases. 

These may include distinctive identifiers, comments, structural code snippets, 

filenames, configuration entries, and deliberately inserted honeypot markers. 

2. Participating AI providers call the Husn API when they ingest or analyze code. They 

submit content (or derived representations such as chunks, hashes, or features) 

together with metadata such as provider ID and file path. 

3. Husn evaluates submissions against each organization’s registered patterns, 

determines whether matches exist, and returns a policy decision (e.g., allow, notify, 

require approval, block).  

4. Husn simultaneously logs events and forwards alerts to the organization via 

webhooks and dashboards, enabling incident response and governance reporting. 

Privacy-preserving matching modes. Husn can be deployed in multiple data-handling 

modes depending on organizational sensitivity and provider constraints. In the simplest 

mode, providers submit content or code chunks for matching. To reduce exposure, 

providers can instead submit derived fingerprints (e.g., token-level n-gram hashes or 

winnowed hashes) and Husn performs matching over fingerprints only. For higher-

sensitivity deployments, organizations can register keyed fingerprints (e.g., an HMAC over 

canonicalized tokens) so that Husn only sees digests and provider-side metadata rather 

than full source files. 

From the organization’s perspective, Husn provides a single interface: once patterns are 

registered, any participating AI provider becomes a monitored surface for the organization’s 

code. 

Why Invisible Patterns Matter 
A naive way to track sensitive code might be to add visible marker files (e.g., .husn at the 

repository root) or banner comments (e.g., “Do not use with AI”). However, such 

approaches are fragile: 

• Markers can be removed by an attacker or omitted when copying subsets of the 

repository. 

• Visible markers reveal what triggers detection, making it easier for adversaries to 

filter or obfuscate them. 

• They can create noise when copied into samples, tutorials, or unrelated projects. 

Instead, Husn focuses on hard-to-notice patterns that are naturally embedded within code: 

• Function and class names that are unique to the organization. 

• Internal API endpoints and protocol identifiers. 

• Characteristic comments, headers, or error messages. 

• File naming conventions (e.g., configuration or secrets files). 
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• Honeypot constructs that look like normal code but are semantically inert. 

• These patterns are difficult to remove at scale without breaking builds or tests, and 

discovering them externally is non-trivial. The result is a robust, low-friction way to 

tag code so that it can be recognized within AI providers without changing developer 

workflows. 

Detection Flow 
At a high level, a participating AI provider integrates Husn Canaries at two points: code 

ingestion (e.g., indexing a project for workspace context) and request handling (e.g., when 

a user opens a file or asks a question about the code). The detection flow is: 

1. Code context received: A user connects their repository or uploads files to the AI 

tool. The provider’s backend receives the code and begins indexing or chunking it. 

2. Pattern check: For each chunk or file, the provider sends a request to the Husn API 

that includes: 

° Provider identifier and a pseudonymous user or workspace identifier. 

° Content or derived features suitable for matching. 

° Metadata such as file path, repository name, and interface (IDE, web, API). 

3. Matching and policy evaluation: Husn checks the content against the pattern 

registry for all participating organizations. When matches are found, Husn evaluates 

the organization’s configured policy for each pattern. 

4. Decision returned: Husn responds with: 

° Whether one or more patterns matched. 

° The organization(s) associated with those patterns. 

° The effective policy decision for this interaction (e.g., clear, notify, 

approve, block). 

° Optional structured details (pattern IDs, matched types, and context). 

5. Provider enforcement: The provider enforces the decision. For example: 

° Continue normally for clear. 

° Show a non-blocking banner for notify. 

° Pause the session and prompt the user that approval is pending for approve. 

° Refuse to analyze the content and display a configurable message for block. 

6. Organizational response: Husn logs the event, updates the organization’s 

dashboard, and optionally sends alerts via webhooks to SIEM, Slack, PagerDuty, or 

an incident response system. 
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Pattern Types 
The Husn pattern registry supports several pattern types, such as raw text, identifiers, 

filenames, and code snippets. An organization might register patterns like the following: 

{ 

"patterns": [ 

{ 

"type": "text", 

"pattern": "__ACME_CANARY_*__", 

"policy": "block" 
}

, 

{ 
"type": "function", 

"pattern": "acme_internal_*", 

"policy": "notify" 
}

, 

{ 
"type": "variable", 

"pattern": "PROPRIETARY_*", 
"policy": "notify" 

}

, 

{ 
"type": "filename", 

"pattern": "*.secrets.yaml", 

"policy": "block" 

}, 

{ 
"type": "honeypot", 

"pattern": "__ACME_CANARY_7f3a9b2e__", 

"policy": "block" 

}

, 

{ 
"type": "code", 

"pattern": "public class AcmeProprietaryCrypto { ... }", 

"description": "Proprietary encryption implementation", 

"policy": "approve" 
} 

] 

} 
 

Patterns can be associated with different policies and metadata. Honeypot patterns, in 

particular, are designed such that any occurrence outside controlled environments is a 

strong indicator of unauthorized reuse or analysis. 

Enforcement Policies 
For each pattern, organizations configure one of several enforcement actions: 
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• Clear: No special action. Used for tagging or analytics-only patterns. 

• Notify: Allow the AI interaction to proceed but log and emit an alert to the 

organization. 

• Require approval: Pause the AI session and require an authorized reviewer to 

approve or deny continued access. The provider receives a “pending” decision and is 

expected to cache the result. 

• Block: Immediately deny AI access to the matching content. The provider must 

refuse to analyze the code and display a configured message. 

• Noise control and safe defaults. In deployments with many repositories and teams, 

the primary usability risk is excessive blocking or alert fatigue. A practical approach 

is to start new pattern sets in Notify mode, measure precision, and then promote 

only high-confidence patterns to Block. Providers can further reduce operational 

pain by aggregating detections per workspace session, caching “pending” approval 

outcomes, and requiring multiple independent matches before applying disruptive 

actions. 

Policies can be customized per organization and per pattern type. For example, an 

organization might choose to block any access to cryptographic implementations while 

simply logging use of higher-level business logic. 

Security Analysis 

Bypass Resistance 
Because detection is implemented on AI provider infrastructure, modifications to client 

devices have limited impact: 

• Client modifications are ineffective: Users cannot evade detection by disabling 

plugins, switching IDEs, or using different browsers. As long as the provider 

integrates Husn within its backend pipeline, all content submitted to that provider can 

be checked. 

• Patterns are difficult to remove: Invisible patterns are embedded within function 

names, class hierarchies, error messages, and configuration files. Removing them 

without breaking builds, tests, or runtime behavior requires substantial effort and 

expertise, particularly in large codebases. 

• Pattern discovery is non-trivial: The pattern registry is not exposed to end users. 

Without knowledge of which specific identifiers or structures are used as canaries, 

attackers must either perform exhaustive static analysis or risk triggering honeypots. 

• Personal accounts still visible: The mechanism does not depend on corporate 

SSO. Even if users log into AI tools with personal accounts, the underlying provider 

integration still consults Husn and can produce alerts for the organization. 
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Local-only models that never interact with a participating provider are out of scope for Husn; 

we discuss this limitation under Limitations and Future Work. 

Robustness to Transformations 
Attackers and policy-evading users may attempt to avoid triggering canaries by either 

submitting only partial snippets of code or transforming code to remove or obscure patterns. 

Common strategies include renaming identifiers, stripping comments, reformatting, moving 

code across files, or performing light refactors with AI assistance. 

Husn mitigates these attempts through three complementary mechanisms: 

• Distributed and heterogeneous patterns: Organizations can place multiple 

canaries across different layers (filenames, identifiers, configuration keys, and 

honeypots) so that evasion requires multiple classes of transformations rather than a 

single string edit. 

• Canonicalization and fingerprinting: Providers can normalize submissions prior to 

matching (e.g., whitespace/comment normalization or tokenization) and submit 

resilient fingerprints rather than raw strings, improving robustness against formatting 

changes. 

• Multi-signal confidence: Enforcement can require multiple independent matches 

within a session (e.g., two or more canaries across distinct pattern types) before 

taking disruptive actions, reducing both false positives and evasion risk. 

Fully semantic matching for heavily rewritten code is an important extension; we include it 

as future work in Limitations and Future Work. 

External Threat Detection 
Husn provides a unique capability for detecting adversaries using stolen code with AI tools:  

• Attackers who obtain a copy of a repository and paste it into a participating AI tool for 

analysis will necessarily trigger the provider’s Husn checks. 

• If the repository contains registered patterns, Husn will match those patterns and 

emit alerts back to the organization, including provider-side metadata such as 

timestamps and workspace identifiers. 

• This holds even when the attacker is on a personal device, using a personal account, 

and operating outside any corporate network controls. 

This detection is not foolproof (attackers may selectively copy subsets of files, or operate 

entirely offline), but it provides a new layer of visibility that did not exist previously. 

Comparison to Client-Side Hooks 
The table below compares Husn Canaries to client-side lifecycle hooks such as IDE 

extensions and local proxies. 
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Property Client-side hooks / plugins Husn Canaries 

Deployment location Developer machines (IDE, 
browser, local agent) 

AI provider backend (server-
side) 

Scope of visibility 
Managed devices and networks 
only 

Any use of participating AI 
providers, including personal 
accounts 

Resistance to bypass 
Low: users can switch tools or 
devices 

High: enforced centrally at 
providers 

Detection of external 
attackers with stolen 
code 

No 
Yes, if attackers use 
participating providers 

Per-provider integration 
effort 

Often N/A (per-IDE) 
Single API integration per 
provider 

Impact on developer 
workflow 

Can be intrusive; depends on 
plugin design 

Transparent; no changes to 
local workflow 

Table 1: Comparison between client-side lifecycle hooks and the Husn Canaries provider-side 
architecture. 

In practice, Husn is intended to complement, not replace, client-side measures. Client 

controls can prevent accidental misuse on managed devices, while Husn provides backstop 

detection and governance across providers and external actors. 

Operational Noise and False Positives 
As with any pattern-based detection system, Husn must balance precision with usability. 

Noise can arise from overly broad patterns, common substrings, copy-pasted boilerplate, or 

legitimate reuse of shared components. In addition, multi-tenant deployments introduce a 

subtle failure mode: when multiple organizations register overlapping patterns with the 

same provider, attribution may be ambiguous and providers must avoid leaking other 

tenants’ pattern structure (see: Limitations and Future Work). 

Husn’s policy ladder provides a practical safety valve. A common rollout strategy is to start 

new pattern sets in Notify mode, measure precision, and then promote only high-

confidence patterns (especially honeypots) to Block. Providers can reduce operational 

pain by aggregating detections per workspace session, rate-limiting repeated alerts, and 

caching approvals to avoid repeated interruptions during active development. 

Proof of Concept Implementation 

To demonstrate the practicality of Husn Canaries, we implemented a working prototype that 

integrates with Claude Code using the Model Context Protocol (MCP). The prototype 

mirrors the architecture that AI providers would adopt in production. 
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Architecture 
The proof-of-concept consists of four main components: 

1. MCP server: A TypeScript-based MCP server that exposes a check code tool to 

Claude Code. Whenever Claude indexes project files, the MCP server sends their 

contents and metadata to the Husn backend for pattern checking. 

2. Husn backend: A backend service that stores organizations, patterns, and detection 

events in a SQLite database. It exposes an HTTP API for pattern checks as well as 

an administrative API for pattern management. 

3. Admin dashboard: A web interface where organizations can: 

° Register themselves and obtain API credentials. 

° Define and edit canary patterns and their associated policies. 

° View real-time alerts, past events, and analytics. 

4. Demo project: A sample codebase containing embedded honeypot patterns and 

representative code structures. This project is opened in Claude Code to simulate 

realistic usage. 

MCP Tool Design 
The check code tool is registered with Claude Code as a workspace integration. When 

Claude ingests files from the demo project, it calls this tool with file content and metadata. 

The MCP server then forwards a simplified request to the Husn backend, for example: 

POST /v1/check 

{ 

"provider_id": "claude-code", 

"workspace_id": "demo-workspace-123", 

"file_path": "src/payments/CardProcessor.cs", 

"content": "... file contents omitted for brevity ..." 

} 

The Husn backend inspects the content against registered patterns and returns a response 

such as: 

{ 

"matches": [ 

{ 

"organization": "acme", 

"pattern_id": "honeypot-7f3a9b2e", 
"policy": "block" 

} 

], 

"decision": "block" 

} 
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The MCP server translates this into a structured result for Claude Code, which then applies 

the configured UI behavior (for example, displaying a blocking message). 

Policy Enforcement 
When a block decision is returned, Claude Code is instructed not to analyze the affected 

project and to display a clear, user-facing message. In our prototype, the message takes 

the following form: 

Your organization, ACME CORPORATION, has classified this 

code as sensitive. AI analysis has been blocked by 

policy. 

If you believe this is an error or require an exception, 

please contact security@example.com and include this 

reference: 
HUSN-ALERT-2025-03-001. 

 

This illustrates how provider-side enforcement can halt AI analysis of protected code mid-

session while directing the user to an appropriate escalation path. 

Architecture Diagram 
The diagram below illustrates the following end-to-end flow: 

1. Code is accessed by an internal developer, contractor, or external attacker. 

2. The user selects an AI provider (e.g., Claude Code) and connects or uploads the 

code. 

3. The provider indexes the code and calls the Husn API as part of its processing 

pipeline. 

4. The Husn Canaries service matches patterns and determines whether a policy 

should be applied. 

5. Policy enforcement occurs at the provider (approve, notify, or block). 

6. Simultaneously, Husn notifies the organization via dashboards and webhooks so that 

incident response processes can begin. 
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Figure 1: High-level Husn Canaries architecture across organization,  
Husn service, and AI provider. 

Key Demonstration Points 
The proof-of-concept validates several aspects of the Husn Canaries design: 

• Patterns trigger reliably: Honeypot identifiers embedded in realistic code 

comments and variables are detected as soon as the project is indexed. 
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• Near-real-time detection: Alerts appear in the dashboard shortly after Claude Code 

accesses the project, demonstrating that the architecture can support near-real-time 

monitoring. 

• Effective policy enforcement: The block policy prevents further AI analysis of the 

demo project, even when the user is in the middle of a coding session. 

• File-type agnostic: The prototype treats all files equally: source code, configuration 

files, and documentation are scanned for registered patterns. 

Readers can watch a short video of the prototype in action here: 

 https://www.youtube.com/ watch?v=AtWB6DzwRVk. 

Use Cases 

Husn Canaries supports several practical use cases for organizations adopting AI coding 

assistants. 

Compliance Enforcement 
Highly regulated organizations (e.g., healthcare and financial services) can register patterns 

associated with code that handles regulated data. Policies can be configured to block AI 

analysis of these repositories outright or to require explicit approval from a compliance 

officer. This provides a technical control that supports written policies and helps 

demonstrate governance to auditors. 

Stolen Code Detection 
Organizations can register distinctive function names, protocol identifiers, and internal API 

signatures from their core services. If an attacker submits stolen code to a participating AI 

tool, Husn detects the patterns and alerts the organization with provider metadata. Even if 

the organization cannot immediately identify the attacker, this serves as an early indicator 

of compromise and a trigger for investigation. 

Contractor Code Retention 
When working with external contractors, organizations can embed honeypot patterns into 

the portions of the codebase shared with the contractor. If those patterns later appear in AI 

analysis initiated by unknown users, Husn alerts the organization. This provides evidence 

that contractor code may have been retained or redistributed beyond agreed boundaries. 

Usage Tracking 
Organizations may wish to understand how broadly AI coding assistants are used on their 

codebases, even when no strict policy violations occur. By registering benign but distinctive 

patterns (e.g., copyright headers or root package names), they can collect aggregate 

statistics on AI adoption by team, repository, and provider, informing training, licensing, and 

governance decisions. 

https://www.youtube.com/watch?v=AtWB6DzwRVk
https://www.youtube.com/watch?v=AtWB6DzwRVk
https://www.youtube.com/watch?v=AtWB6DzwRVk
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Limitations and Future Work 

Husn Canaries is not a complete solution to all AI-related risks. We highlight several 

limitations and potential extensions. 

Limitations 
Partial-code usage: Attackers and users may submit only small snippets of code to AI 

tools. If those snippets do not contain registered patterns, detection will not occur. In 

practice, this can be mitigated by: 

• Distributing patterns across many parts of the codebase. 

• Using patterns that naturally appear in a wide range of files (e.g., shared libraries, 

logging utilities). 

• Introducing dedicated honeypot constructs that are likely to be touched when 

exploring the most security-sensitive components. 

Pattern maintenance: Over time, codebases evolve. Patterns may be refactored away or 

become less distinctive. Organizations will need processes to periodically refresh pattern 

sets and validate coverage. In practice, this can be partially automated: an organization can 

run a “canary mining” job that proposes candidate patterns by scoring identifiers and strings 

for uniqueness, breadth of occurrence, and survivability under refactors (e.g., public APIs, 

widely referenced configuration keys, or invariant error messages). A periodic coverage 

check can validate that registered canaries still exist post-refactor and continue to appear in 

representative builds and tests. 

Provider adoption: The architecture assumes that AI providers are willing to integrate with 

Husn or a similar service. While the technical burden is low, adoption depends on customer 

demand, privacy considerations, and industry alignment. A future direction is to standardize 

the interface so that multiple providers and third-party services can interoperate. 

Intra-provider pattern collisions: A subtle challenge arises when multiple organizations 

use the same AI provider and independently register patterns that fully or partially overlap. 

Because providers should not disclose the existence or structure of other customers’ 

patterns, collisions may lead to ambiguous detections or conservative suppression of model 

outputs. For example, if two organizations register syntactically similar patterns, or if one 

organization’s pattern is a strict substring of another’s, the provider must decide how to 

attribute a match without leaking information about other tenants. Current Husn semantics 

do not prescribe how providers should resolve such conflicts, and different providers may 

adopt different policies (e.g., deterministic tie-breaking, non-attributable “collision warnings,” 

or returning coarse-grained alerts). 

This limitation also affects false positives: an organization could inadvertently trigger 

detections based on another organization’s pattern, even though neither party learns the 

other’s pattern content. Future work could explore privacy-preserving disambiguation 

mechanisms, such as secure multiparty comparison of pattern ownership, cryptographic 



 

 
  

 

©2025 IOActive, Inc. All Rights Reserved. 

 
Publication Date: December 22, 2025 

 

[18] 

namespaces, or per-tenant pattern scoping that reduces the likelihood of inter-

organizational interference. Another promising direction is the development of standardized 

pattern formats with optional metadata or hashing schemes that help providers detect and 

prevent collisions without exposing sensitive pattern details. 

Future extensions: 
Several enhancements are possible: 

• Semantic matching for renamed identifiers or lightly refactored code. 

• Cross-provider standards for pattern registration and policy exchange. 

• On-premises Husn deployments for highly sensitive environments that cannot rely on 

an external service. 

• Canonicalization and fingerprint-based matching to improve robustness against 

formatting changes and light refactors without requiring raw code to leave provider 

boundaries. 

• Privacy-preserving disambiguation and namespacing mechanisms to reduce inter-

tenant collisions while minimizing pattern leakage. 

• AST-based structural fingerprinting that captures code structure (e.g., function 

signatures, class hierarchies, control flow patterns) rather than raw text, providing 

resilience against identifier renaming, comment stripping, and whitespace 

normalization. 

• Control flow graph (CFG) and data flow signatures that detect characteristic program 

logic even when surface-level code has been substantially rewritten. 

• Machine learning-based code similarity using code embeddings or neural fingerprints 

to identify semantically equivalent code across heavy refactoring or language 

translation. 

• Behavioral and runtime canaries that trigger based on execution patterns, API call 

sequences, or telemetry rather than static code analysis. 

• Stylometric detection that identifies organizational or author-specific coding patterns 

(e.g., naming conventions, error handling idioms, architectural choices) as 

supplementary attribution signals. 
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Conclusion 

AI coding assistants can deliver substantial productivity gains while introducing new 

governance and security challenges. Existing client-side approaches are readily bypassed 

and offer limited visibility into unmanaged environments and external adversaries. 

Husn Canaries shifts detection and enforcement to AI providers by leveraging hard-to-

remove patterns embedded within code. Organizations register these patterns once, and 

participating providers consult the Husn service during code ingestion and analysis. When 

matches occur, Husn returns policy decisions and notifies the organization, enabling 

detection and governance regardless of where or by whom the code is analyzed. 

Our proof-of-concept integration with Claude Code demonstrates that this architecture is 

practical: it requires modest provider-side integration, works with existing tooling (via MCP), 

and supports near-real-time alerting and enforcement. We believe Husn-style canaries can 

form a basis for an industry-wide approach to AI coding assistant governance. 

We invite AI providers, security teams, and standards bodies to explore and iterate on this 

approach. The core question is: if someone, anywhere in the world, uses an AI tool to 

analyze our code, can we learn about it in time to respond? 

FAQ 

Q: What does “Husn” mean and how is it pronounced? 

A: The name “Husn” (pronounced /èUsn/, approximately “hoosn”) comes from the Arabic 

word for fortress or stronghold. Husn Canaries turns your codebase’s natural complexity 

into a defensive asset, transforming existing code patterns into an early-warning system 

that detects unauthorized AI analysis. 

Q: Why would I put my code on Husn Canaries’ servers? 

A: In practice, you are not uploading an entire repository to Husn Canaries. Instead, you 

register a small set of carefully chosen patterns (identifiers, snippets, honeypots) that 

already exist in your codebase. With or without Husn, code is often submitted to AI 

providers today and organizations typically lack visibility when that happens. Husn Canaries 

turns that reality into an actionable signal: when your code (or a stolen copy) is analyzed by 

a participating AI provider, you can receive an alert and enforce policy rather than 

remaining blind. 

Moreover, most organizations already entrust sensitive source code to third-party platforms 

(e.g., Git hosting and CI/CD providers) under access control and audit expectations. Husn 

Canaries follows the same principle of minimizing exposure: you register only a limited set 

of canary patterns, and the system can be deployed in modes that avoid transferring raw 

code beyond what is necessary for matching (e.g., using derived representations such as 

hashes or fingerprints). 
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Q: Do AI providers (or Husn) need to see my raw source code? 

A: Providers already receive code in order to perform AI analysis, similar in spirit to how 

source hosting platforms handle proprietary repositories. Husn can be integrated so that it 

does not store full repositories: organizations register small pattern sets, and providers can 

submit either raw snippets (simplest) or derived fingerprints (preferred) such as token 

hashes. In higher-sensitivity deployments, keyed fingerprints allow matching while keeping 

the Husn service limited to org-scoped digests and policy decisions. 

Q: What about collisions, where different organizations register the same canary 
patterns? 

A: The Husn design explicitly accounts for pattern collisions and malicious pattern 

“squatting”. At a high level, the registry does not rely on any single string as a sole 

attribution signal: patterns are evaluated in combination and in context, and the system 

incorporates rarity, provenance, and other features to separate genuine ownership from 

accidental or adversarial reuse. The concrete collision-handling mechanisms and 

thresholds are part of the Husn deployment design and are not described in detail in this 

paper; we outline only the core abstraction and trust model here. 

Q: What about Local AI Models? 

A: Local AI models are out of scope for this paper. 

Q: Who can access the Husn Canaries API? 

A: The Husn Canaries detection API is intended to be accessible only to participating AI 

providers and is not exposed to end users. Providers authenticate server-to-server (e.g., 

with provider-issued credentials) and invoke the API as part of their request-processing 

pipeline. This access model reduces the risk that an attacker could probe the API to 

enumerate patterns or test evasion strategies, and helps keep canary patterns from being 

revealed through the API surface. 

Q: Can developers or end users query the API to check whether their code 
matches a canary? 

A: No. End users do not receive direct access to the Husn Canaries matching endpoint. 

Instead, organizations receive alerts and enforcement outcomes through provider-

integrated controls (e.g., notify, require approval, or block) and optional organization-facing 

channels such as dashboards or webhooks, without disclosing the underlying pattern 

details. 

Q: Is this limited only to code? 

A: No. It can also be utilized for images, videos, documents, etc. 

Q: Why would AI providers adopt Husn Canaries? 

A: Several converging pressures make provider-side governance increasingly attractive: 
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• Enterprise customer demand: Large organizations are reluctant to adopt AI coding 

assistants without governance guarantees. Providers that offer verifiable controls 

gain competitive advantage in enterprise sales. 

• Liability and trust: Providers face reputational and legal risk if their platforms are 

used to analyze stolen intellectual property. Proactive detection demonstrates good 

faith and due diligence. 

• Regulatory trajectory: Emerging frameworks such as the EU AI Act, evolving data 

protection regulations, and sector-specific compliance requirements (e.g., HIPAA, 

SOC2, FedRAMP) increasingly expect platforms to implement content governance 

mechanisms. Early adoption positions providers ahead of mandates. 

• Low integration cost: The technical burden is modest: a small number of API calls 

during indexing and request handling. The cost-benefit ratio favors adoption, 

especially when offered as an opt-in enterprise feature. 

Looking ahead, AI-assisted development will become ubiquitous, and the volume of code 

processed by AI providers will grow by orders of magnitude. Simultaneously, code theft, 

supply chain attacks, and insider threats will continue to rise. Without provider-side 

governance infrastructure, organizations will face an impossible choice: adopt AI tools and 

lose visibility, or forgo productivity gains to preserve control. Husn Canaries (or similar 

mechanisms) can resolve this tension by making AI adoption compatible with security and 

compliance requirements. The question is not whether such systems will exist, but whether 

they will be standardized and interoperable across providers. 

Acknowledgments 

The authors thank the research community for discussions that informed this work. 



 

 
  

 

©2025 IOActive, Inc. All Rights Reserved. 

 
Publication Date: December 22, 2025 

 

[22] 

References 

[1] Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The Impact of AI on Developer 

Productivity: Evidence from GitHub Copilot. https://arxiv.org/abs/2302.06590, 2023. 

[2] Google Research. AI in software engineering at Google: Progress and the path ahead. 

https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-

ahead/, 2024. 

[3] Perplexity AI. The Adoption and Usage of AI Agents: Early Evidence from Perplexity. https: 

//arxiv.org/abs/2512.07828, 2025. 

[4] Cursor. Cursor: The AI Code Editor. https://cursor.sh, 2025. 

[5] Anthropic. Claude Code: AI Coding Assistant. https://www.anthropic.com/claude/code, 2025. 

[6] GitHub. GitHub Copilot Documentation. https://docs.github.com/en/copilot, 2025. 

 

https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2302.06590
https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-ahead/
https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-ahead/
https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-ahead/
https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-ahead/
https://arxiv.org/abs/2512.07828
https://arxiv.org/abs/2512.07828
https://arxiv.org/abs/2512.07828
https://cursor.sh/
https://cursor.sh/
https://www.anthropic.com/claude/code
https://www.anthropic.com/claude/code
https://docs.github.com/en/copilot
https://docs.github.com/en/copilot

	Abstract
	Introduction
	The Client-Side Problem
	Contributions

	Threat Model
	Adversary Models
	Requirements

	Husn Canaries Design
	Core Concept
	Why Invisible Patterns Matter
	Detection Flow
	Pattern Types
	Enforcement Policies

	Security Analysis
	Bypass Resistance
	Robustness to Transformations
	External Threat Detection
	Comparison to Client-Side Hooks
	Operational Noise and False Positives

	Proof of Concept Implementation
	Architecture
	MCP Tool Design
	Policy Enforcement
	Architecture Diagram
	Key Demonstration Points

	Use Cases
	Compliance Enforcement
	Stolen Code Detection
	Contractor Code Retention
	Usage Tracking

	Limitations and Future Work
	Limitations
	Future extensions:

	Conclusion
	FAQ
	References

