

\ WHITE PAPER \

Husn Canaries: Defense-In-
Depth for AI Coding Assistant
Governance

Ehab Hussein
Principal AI Engineer

Mohamed Samy
Senior AI Security Consultant

December 2025

IOACTIVE.COM

©2025 IOActive, Inc. All Rights Reserved.

[2]

Contents

Abstract.. 3

Introduction .. 4

The Client-Side Problem .. 4

Contributions .. 5

Threat Model ... 5

Adversary Models .. 5

Requirements ... 6

Husn Canaries Design... 6

Core Concept ... 6

Why Invisible Patterns Matter .. 7

Detection Flow ... 8

Pattern Types ... 9

Enforcement Policies ... 9

Security Analysis ... 10

Bypass Resistance .. 10

Robustness to Transformations ... 11

External Threat Detection .. 11

Comparison to Client-Side Hooks.. 11

Operational Noise and False Positives .. 12

Proof of Concept Implementation .. 12

Architecture .. 13

MCP Tool Design ... 13

Policy Enforcement .. 14

Architecture Diagram ... 14

Key Demonstration Points ... 15

Use Cases ... 16

Compliance Enforcement .. 16

Stolen Code Detection ... 16

Contractor Code Retention .. 16

Usage Tracking .. 16

Limitations and Future Work ... 17

Limitations .. 17

Future extensions: ... 18

Conclusion ... 19

FAQ ... 19

References .. 22

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[3]

Abstract

AI-powered coding assistants such as OpenAI Codex, Claude Code, GitHub Copilot, and

similar tools are increasingly embedded in everyday software development workflows.

While these systems can improve productivity, they also introduce a new class of

governance and security challenges. Once source code leaves an organization via (for

example) exfiltration, contractor access, or personal devices, organizations lack reliable

visibility into whether and when that code is subsequently analyzed by cloud AI providers.

Existing solutions emphasize client-side enforcement approaches: IDE extensions, browser

controls, network proxies, lifecycle hooks, and endpoint agents. However, these measures

can be bypassed and provide no visibility into external attackers who paste stolen

repositories into AI tools outside the organization’s perimeter.

We propose using Husn Canaries, a centralized detection and policy service in which

organizations register hard-to-notice patterns already present in their codebases (e.g.,

tokens or comments, regular expressions, and intentionally placed signatures). Participating

AI providers call the Husn API during code indexing and request handling. When Husn

identifies pattern matches, it returns policy decisions (e.g., allow with logging, require

approval, or block) and emits tamper-resistant alerts back to the organization.

Our contributions are as follows:

• A threat model for AI coding assistant misuse that covers internal developers,

external contractors, and external attackers operating with stolen code.

• The design of a provider-side, pattern-based architecture that detects AI usage on

sensitive code regardless of client configuration or user identity.

• A working proof-of-concept implementation using the Model Context Protocol (MCP)

and Claude Code, demonstrating real-time enforcement and alerting.

• A discussion of limitations, security properties, and deployment considerations for

multi-provider adoption.

By shifting detection to AI providers and leveraging hard-to-remove in-code patterns, Husn

Canaries turns the AI ecosystem into a distributed early-warning surface for sensitive code.

A video demonstration of this concept can be found here:

https://www.youtube.com/watch?v=AtWB6DzwRVk.

https://www.youtube.com/watch?v=AtWB6DzwRVk

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[4]

Introduction

AI coding assistants increasingly support software authoring, review, and maintenance by

providing context-aware suggestions, refactoring assistance, and automated test

generation. Studies report significant productivity gains for developers, particularly when

working with unfamiliar codebases or languages [1–4]. Commercial tools such as Claude

Code [5] and GitHub Copilot [6] are now widely integrated into modern development

workflows.

At the same time, these tools introduce governance and security challenges that existing

controls are poorly equipped to address:

• Internal governance: Security teams often lack a clear view of how, where, and by

whom AI coding assistants are used on sensitive repositories. Different teams may

use different tools and accounts (corporate and personal), making it difficult to

demonstrate compliance with regulatory requirements (e.g., HIPAA, SOC2, PCI-

DSS).

• External threats: Once source code is stolen or leaked, adversaries can paste

entire repositories into AI tools to accelerate vulnerability discovery, perform variant

analysis, and reconstruct architecture diagrams. Organizations have no visibility into

this activity and no reliable way to detect that their code is being analyzed.

• Enforcing “no AI” zones: Some repositories must not be analyzed by AI at all (e.g.,

highly regulated code, cryptographic implementations, or embargoed IP). Today,

enforcement typically relies on internal policy and weak client-side controls. Once the

code leaves the environment, these guarantees do not hold.

These challenges share a common root: governance is typically implemented at the client

(e.g., IDE plugins, browsers, proxies) rather than at the provider where analysis actually

occurs.

The Client-Side Problem
Organizations commonly deploy a combination of the following:

• IDE plugins or configuration files that disable specific AI features for certain projects.

• Browser controls or URL filtering to limit access to AI web interfaces.

• Network proxies that block access to unapproved AI endpoints.

• Single sign-on (SSO) or data loss prevention (DLP) tools that monitor internal traffic.

These approaches share several weaknesses:

• They assume the user is on a managed device and network.

• They cannot reliably see or control activity performed on personal machines, home

networks, or accounts outside the organization.

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[5]

• They provide no visibility into external attackers who have obtained code through

breaches, insider threats, or misconfigurations and are using AI tooling elsewhere.

• They rely on users not deliberately circumventing controls (e.g., by copy-pasting into

a browser window on a personal laptop).

In short, client-side controls can be useful for hygiene but are insufficient as a security

boundary. The only place where AI analysis of code necessarily passes is at the AI provider

itself.

Contributions
This paper introduces Husn Canaries as a defense-in-depth mechanism for AI coding

assistant governance. Our main contributions are:

• Threat model: We formalize a threat model for AI coding assistant misuse

encompassing internal developers, external contractors, and external attackers in

possession of stolen code.

• Architecture: We present Husn Canaries, a provider-side, pattern-based detection

service that allows organizations to register hard-to-notice code patterns and receive

alerts and policy enforcement when those patterns appear in AI analysis.

• Prototype: We implement a proof-of-concept integration with Claude Code via MCP,

including a Husn server, an organizational dashboard, a backing data store, and

example honeypot patterns embedded in a demo project.

• Evaluation: We analyze security properties, bypass resistance, and limitations, and

we outline future directions such as semantic matching and cross-provider

standards.

Threat Model

We consider a typical enterprise that owns one or more source-code repositories and

permits some forms of AI-assisted development. The goal is to detect and govern AI usage

on code assets that the organization deems sensitive.

Adversary Models
We consider four primary adversary types:

1. Internal developers: Full-time employees with authorized access to code

repositories. They may intentionally or unintentionally use AI tools on code that is

subject to stricter governance than their day-to-day workflow reflects.

2. External contractors: Third parties who are temporarily granted access to specific

repositories. After their contract ends, they may retain local copies and continue to

use AI tools on that code, outside organizational controls.

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[6]

3. External attackers: Adversaries who obtain code through data breaches, credential

theft, misconfigured object storage, or leaked backups. They may use AI tools to

rapidly triage the codebase, identify weaknesses, and plan exploitation.

4. Unauthorized recipients: Any party (e.g., former employees, partners, or recipients

of mistakenly shared archives) who was not intended to have long-term analysis

rights but nonetheless has a copy of the code.

Key insight: Internal threats (1 and 2) may be partially mitigated through endpoint and

network controls, but external threats (3 and 4) operate entirely outside the organization’s

infrastructure. The only common observation point is within AI providers when code is

submitted for analysis.

Requirements
An effective governance mechanism for AI coding assistants should satisfy the following

requirements:

1. Bypass resistance: Security should not depend on specific client configurations.

Users should not be able to evade detection simply by switching devices, networks,

or client applications.

2. Universal coverage: The mechanism should apply across IDE plugins, web

interfaces, CLIs, and direct API usage within participating AI providers.

3. External threat detection: The system must detect usage by actors outside the

organization, including attackers and former contractors using personal accounts and

devices.

4. Provider-agnostic design: Patterns registered by the organization should be usable

across multiple AI providers with minimal integration work per provider.

5. Low friction for providers: Integration should be implementable as a small number

of API calls in existing indexing and request-handling pipelines, without requiring

providers to deploy new AI models.

6. Privacy and isolation: Providers should not learn the full details of registered

patterns beyond what is necessary for matching, and patterns should not be exposed

to end users in a way that would allow easy evasion.

7. Actionable outputs: When matches occur, organizations should receive enough

context (e.g., pattern identifiers, file paths, and timestamps) to triage incidents and

respond.

Husn Canaries Design

Core Concept
Husn Canaries is a centralized detection and policy service that sits between organizations

and AI providers. Its operation is conceptually simple:

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[7]

1. Organizations register a set of canary patterns that are present in their codebases.

These may include distinctive identifiers, comments, structural code snippets,

filenames, configuration entries, and deliberately inserted honeypot markers.

2. Participating AI providers call the Husn API when they ingest or analyze code. They

submit content (or derived representations such as chunks, hashes, or features)

together with metadata such as provider ID and file path.

3. Husn evaluates submissions against each organization’s registered patterns,

determines whether matches exist, and returns a policy decision (e.g., allow, notify,

require approval, block).

4. Husn simultaneously logs events and forwards alerts to the organization via

webhooks and dashboards, enabling incident response and governance reporting.

Privacy-preserving matching modes. Husn can be deployed in multiple data-handling

modes depending on organizational sensitivity and provider constraints. In the simplest

mode, providers submit content or code chunks for matching. To reduce exposure,

providers can instead submit derived fingerprints (e.g., token-level n-gram hashes or

winnowed hashes) and Husn performs matching over fingerprints only. For higher-

sensitivity deployments, organizations can register keyed fingerprints (e.g., an HMAC over

canonicalized tokens) so that Husn only sees digests and provider-side metadata rather

than full source files.

From the organization’s perspective, Husn provides a single interface: once patterns are

registered, any participating AI provider becomes a monitored surface for the organization’s

code.

Why Invisible Patterns Matter
A naive way to track sensitive code might be to add visible marker files (e.g., .husn at the

repository root) or banner comments (e.g., “Do not use with AI”). However, such

approaches are fragile:

• Markers can be removed by an attacker or omitted when copying subsets of the

repository.

• Visible markers reveal what triggers detection, making it easier for adversaries to

filter or obfuscate them.

• They can create noise when copied into samples, tutorials, or unrelated projects.

Instead, Husn focuses on hard-to-notice patterns that are naturally embedded within code:

• Function and class names that are unique to the organization.

• Internal API endpoints and protocol identifiers.

• Characteristic comments, headers, or error messages.

• File naming conventions (e.g., configuration or secrets files).

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[8]

• Honeypot constructs that look like normal code but are semantically inert.

• These patterns are difficult to remove at scale without breaking builds or tests, and

discovering them externally is non-trivial. The result is a robust, low-friction way to

tag code so that it can be recognized within AI providers without changing developer

workflows.

Detection Flow
At a high level, a participating AI provider integrates Husn Canaries at two points: code

ingestion (e.g., indexing a project for workspace context) and request handling (e.g., when

a user opens a file or asks a question about the code). The detection flow is:

1. Code context received: A user connects their repository or uploads files to the AI

tool. The provider’s backend receives the code and begins indexing or chunking it.

2. Pattern check: For each chunk or file, the provider sends a request to the Husn API

that includes:

° Provider identifier and a pseudonymous user or workspace identifier.

° Content or derived features suitable for matching.

° Metadata such as file path, repository name, and interface (IDE, web, API).

3. Matching and policy evaluation: Husn checks the content against the pattern

registry for all participating organizations. When matches are found, Husn evaluates

the organization’s configured policy for each pattern.

4. Decision returned: Husn responds with:

° Whether one or more patterns matched.

° The organization(s) associated with those patterns.

° The effective policy decision for this interaction (e.g., clear, notify,

approve, block).

° Optional structured details (pattern IDs, matched types, and context).

5. Provider enforcement: The provider enforces the decision. For example:

° Continue normally for clear.

° Show a non-blocking banner for notify.

° Pause the session and prompt the user that approval is pending for approve.

° Refuse to analyze the content and display a configurable message for block.

6. Organizational response: Husn logs the event, updates the organization’s

dashboard, and optionally sends alerts via webhooks to SIEM, Slack, PagerDuty, or

an incident response system.

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[9]

Pattern Types
The Husn pattern registry supports several pattern types, such as raw text, identifiers,

filenames, and code snippets. An organization might register patterns like the following:

{

"patterns": [

{

"type": "text",

"pattern": "__ACME_CANARY_*__",

"policy": "block"
}

,

{
"type": "function",

"pattern": "acme_internal_*",

"policy": "notify"
}

,

{
"type": "variable",

"pattern": "PROPRIETARY_*",
"policy": "notify"

}

,

{
"type": "filename",

"pattern": "*.secrets.yaml",

"policy": "block"

},

{
"type": "honeypot",

"pattern": "__ACME_CANARY_7f3a9b2e__",

"policy": "block"

}

,

{
"type": "code",

"pattern": "public class AcmeProprietaryCrypto { ... }",

"description": "Proprietary encryption implementation",

"policy": "approve"
}

]

}

Patterns can be associated with different policies and metadata. Honeypot patterns, in

particular, are designed such that any occurrence outside controlled environments is a

strong indicator of unauthorized reuse or analysis.

Enforcement Policies
For each pattern, organizations configure one of several enforcement actions:

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[10]

• Clear: No special action. Used for tagging or analytics-only patterns.

• Notify: Allow the AI interaction to proceed but log and emit an alert to the

organization.

• Require approval: Pause the AI session and require an authorized reviewer to

approve or deny continued access. The provider receives a “pending” decision and is

expected to cache the result.

• Block: Immediately deny AI access to the matching content. The provider must

refuse to analyze the code and display a configured message.

• Noise control and safe defaults. In deployments with many repositories and teams,

the primary usability risk is excessive blocking or alert fatigue. A practical approach

is to start new pattern sets in Notify mode, measure precision, and then promote

only high-confidence patterns to Block. Providers can further reduce operational

pain by aggregating detections per workspace session, caching “pending” approval

outcomes, and requiring multiple independent matches before applying disruptive

actions.

Policies can be customized per organization and per pattern type. For example, an

organization might choose to block any access to cryptographic implementations while

simply logging use of higher-level business logic.

Security Analysis

Bypass Resistance
Because detection is implemented on AI provider infrastructure, modifications to client

devices have limited impact:

• Client modifications are ineffective: Users cannot evade detection by disabling

plugins, switching IDEs, or using different browsers. As long as the provider

integrates Husn within its backend pipeline, all content submitted to that provider can

be checked.

• Patterns are difficult to remove: Invisible patterns are embedded within function

names, class hierarchies, error messages, and configuration files. Removing them

without breaking builds, tests, or runtime behavior requires substantial effort and

expertise, particularly in large codebases.

• Pattern discovery is non-trivial: The pattern registry is not exposed to end users.

Without knowledge of which specific identifiers or structures are used as canaries,

attackers must either perform exhaustive static analysis or risk triggering honeypots.

• Personal accounts still visible: The mechanism does not depend on corporate

SSO. Even if users log into AI tools with personal accounts, the underlying provider

integration still consults Husn and can produce alerts for the organization.

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[11]

Local-only models that never interact with a participating provider are out of scope for Husn;

we discuss this limitation under Limitations and Future Work.

Robustness to Transformations
Attackers and policy-evading users may attempt to avoid triggering canaries by either

submitting only partial snippets of code or transforming code to remove or obscure patterns.

Common strategies include renaming identifiers, stripping comments, reformatting, moving

code across files, or performing light refactors with AI assistance.

Husn mitigates these attempts through three complementary mechanisms:

• Distributed and heterogeneous patterns: Organizations can place multiple

canaries across different layers (filenames, identifiers, configuration keys, and

honeypots) so that evasion requires multiple classes of transformations rather than a

single string edit.

• Canonicalization and fingerprinting: Providers can normalize submissions prior to

matching (e.g., whitespace/comment normalization or tokenization) and submit

resilient fingerprints rather than raw strings, improving robustness against formatting

changes.

• Multi-signal confidence: Enforcement can require multiple independent matches

within a session (e.g., two or more canaries across distinct pattern types) before

taking disruptive actions, reducing both false positives and evasion risk.

Fully semantic matching for heavily rewritten code is an important extension; we include it

as future work in Limitations and Future Work.

External Threat Detection
Husn provides a unique capability for detecting adversaries using stolen code with AI tools:

• Attackers who obtain a copy of a repository and paste it into a participating AI tool for

analysis will necessarily trigger the provider’s Husn checks.

• If the repository contains registered patterns, Husn will match those patterns and

emit alerts back to the organization, including provider-side metadata such as

timestamps and workspace identifiers.

• This holds even when the attacker is on a personal device, using a personal account,

and operating outside any corporate network controls.

This detection is not foolproof (attackers may selectively copy subsets of files, or operate

entirely offline), but it provides a new layer of visibility that did not exist previously.

Comparison to Client-Side Hooks
The table below compares Husn Canaries to client-side lifecycle hooks such as IDE

extensions and local proxies.

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[12]

Property Client-side hooks / plugins Husn Canaries

Deployment location Developer machines (IDE,
browser, local agent)

AI provider backend (server-
side)

Scope of visibility
Managed devices and networks
only

Any use of participating AI
providers, including personal
accounts

Resistance to bypass
Low: users can switch tools or
devices

High: enforced centrally at
providers

Detection of external
attackers with stolen
code

No
Yes, if attackers use
participating providers

Per-provider integration
effort

Often N/A (per-IDE)
Single API integration per
provider

Impact on developer
workflow

Can be intrusive; depends on
plugin design

Transparent; no changes to
local workflow

Table 1: Comparison between client-side lifecycle hooks and the Husn Canaries provider-side
architecture.

In practice, Husn is intended to complement, not replace, client-side measures. Client

controls can prevent accidental misuse on managed devices, while Husn provides backstop

detection and governance across providers and external actors.

Operational Noise and False Positives
As with any pattern-based detection system, Husn must balance precision with usability.

Noise can arise from overly broad patterns, common substrings, copy-pasted boilerplate, or

legitimate reuse of shared components. In addition, multi-tenant deployments introduce a

subtle failure mode: when multiple organizations register overlapping patterns with the

same provider, attribution may be ambiguous and providers must avoid leaking other

tenants’ pattern structure (see: Limitations and Future Work).

Husn’s policy ladder provides a practical safety valve. A common rollout strategy is to start

new pattern sets in Notify mode, measure precision, and then promote only high-

confidence patterns (especially honeypots) to Block. Providers can reduce operational

pain by aggregating detections per workspace session, rate-limiting repeated alerts, and

caching approvals to avoid repeated interruptions during active development.

Proof of Concept Implementation

To demonstrate the practicality of Husn Canaries, we implemented a working prototype that

integrates with Claude Code using the Model Context Protocol (MCP). The prototype

mirrors the architecture that AI providers would adopt in production.

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[13]

Architecture
The proof-of-concept consists of four main components:

1. MCP server: A TypeScript-based MCP server that exposes a check code tool to

Claude Code. Whenever Claude indexes project files, the MCP server sends their

contents and metadata to the Husn backend for pattern checking.

2. Husn backend: A backend service that stores organizations, patterns, and detection

events in a SQLite database. It exposes an HTTP API for pattern checks as well as

an administrative API for pattern management.

3. Admin dashboard: A web interface where organizations can:

° Register themselves and obtain API credentials.

° Define and edit canary patterns and their associated policies.

° View real-time alerts, past events, and analytics.

4. Demo project: A sample codebase containing embedded honeypot patterns and

representative code structures. This project is opened in Claude Code to simulate

realistic usage.

MCP Tool Design
The check code tool is registered with Claude Code as a workspace integration. When

Claude ingests files from the demo project, it calls this tool with file content and metadata.

The MCP server then forwards a simplified request to the Husn backend, for example:

POST /v1/check

{

"provider_id": "claude-code",

"workspace_id": "demo-workspace-123",

"file_path": "src/payments/CardProcessor.cs",

"content": "... file contents omitted for brevity ..."

}

The Husn backend inspects the content against registered patterns and returns a response

such as:

{

"matches": [

{

"organization": "acme",

"pattern_id": "honeypot-7f3a9b2e",
"policy": "block"

}

],

"decision": "block"

}

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[14]

The MCP server translates this into a structured result for Claude Code, which then applies

the configured UI behavior (for example, displaying a blocking message).

Policy Enforcement
When a block decision is returned, Claude Code is instructed not to analyze the affected

project and to display a clear, user-facing message. In our prototype, the message takes

the following form:

Your organization, ACME CORPORATION, has classified this

code as sensitive. AI analysis has been blocked by

policy.

If you believe this is an error or require an exception,

please contact security@example.com and include this

reference:
HUSN-ALERT-2025-03-001.

This illustrates how provider-side enforcement can halt AI analysis of protected code mid-

session while directing the user to an appropriate escalation path.

Architecture Diagram
The diagram below illustrates the following end-to-end flow:

1. Code is accessed by an internal developer, contractor, or external attacker.

2. The user selects an AI provider (e.g., Claude Code) and connects or uploads the

code.

3. The provider indexes the code and calls the Husn API as part of its processing

pipeline.

4. The Husn Canaries service matches patterns and determines whether a policy

should be applied.

5. Policy enforcement occurs at the provider (approve, notify, or block).

6. Simultaneously, Husn notifies the organization via dashboards and webhooks so that

incident response processes can begin.

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[15]

Figure 1: High-level Husn Canaries architecture across organization,
Husn service, and AI provider.

Key Demonstration Points
The proof-of-concept validates several aspects of the Husn Canaries design:

• Patterns trigger reliably: Honeypot identifiers embedded in realistic code

comments and variables are detected as soon as the project is indexed.

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[16]

• Near-real-time detection: Alerts appear in the dashboard shortly after Claude Code

accesses the project, demonstrating that the architecture can support near-real-time

monitoring.

• Effective policy enforcement: The block policy prevents further AI analysis of the

demo project, even when the user is in the middle of a coding session.

• File-type agnostic: The prototype treats all files equally: source code, configuration

files, and documentation are scanned for registered patterns.

Readers can watch a short video of the prototype in action here:

 https://www.youtube.com/ watch?v=AtWB6DzwRVk.

Use Cases

Husn Canaries supports several practical use cases for organizations adopting AI coding

assistants.

Compliance Enforcement
Highly regulated organizations (e.g., healthcare and financial services) can register patterns

associated with code that handles regulated data. Policies can be configured to block AI

analysis of these repositories outright or to require explicit approval from a compliance

officer. This provides a technical control that supports written policies and helps

demonstrate governance to auditors.

Stolen Code Detection
Organizations can register distinctive function names, protocol identifiers, and internal API

signatures from their core services. If an attacker submits stolen code to a participating AI

tool, Husn detects the patterns and alerts the organization with provider metadata. Even if

the organization cannot immediately identify the attacker, this serves as an early indicator

of compromise and a trigger for investigation.

Contractor Code Retention
When working with external contractors, organizations can embed honeypot patterns into

the portions of the codebase shared with the contractor. If those patterns later appear in AI

analysis initiated by unknown users, Husn alerts the organization. This provides evidence

that contractor code may have been retained or redistributed beyond agreed boundaries.

Usage Tracking
Organizations may wish to understand how broadly AI coding assistants are used on their

codebases, even when no strict policy violations occur. By registering benign but distinctive

patterns (e.g., copyright headers or root package names), they can collect aggregate

statistics on AI adoption by team, repository, and provider, informing training, licensing, and

governance decisions.

https://www.youtube.com/watch?v=AtWB6DzwRVk
https://www.youtube.com/watch?v=AtWB6DzwRVk
https://www.youtube.com/watch?v=AtWB6DzwRVk

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[17]

Limitations and Future Work

Husn Canaries is not a complete solution to all AI-related risks. We highlight several

limitations and potential extensions.

Limitations
Partial-code usage: Attackers and users may submit only small snippets of code to AI

tools. If those snippets do not contain registered patterns, detection will not occur. In

practice, this can be mitigated by:

• Distributing patterns across many parts of the codebase.

• Using patterns that naturally appear in a wide range of files (e.g., shared libraries,

logging utilities).

• Introducing dedicated honeypot constructs that are likely to be touched when

exploring the most security-sensitive components.

Pattern maintenance: Over time, codebases evolve. Patterns may be refactored away or

become less distinctive. Organizations will need processes to periodically refresh pattern

sets and validate coverage. In practice, this can be partially automated: an organization can

run a “canary mining” job that proposes candidate patterns by scoring identifiers and strings

for uniqueness, breadth of occurrence, and survivability under refactors (e.g., public APIs,

widely referenced configuration keys, or invariant error messages). A periodic coverage

check can validate that registered canaries still exist post-refactor and continue to appear in

representative builds and tests.

Provider adoption: The architecture assumes that AI providers are willing to integrate with

Husn or a similar service. While the technical burden is low, adoption depends on customer

demand, privacy considerations, and industry alignment. A future direction is to standardize

the interface so that multiple providers and third-party services can interoperate.

Intra-provider pattern collisions: A subtle challenge arises when multiple organizations

use the same AI provider and independently register patterns that fully or partially overlap.

Because providers should not disclose the existence or structure of other customers’

patterns, collisions may lead to ambiguous detections or conservative suppression of model

outputs. For example, if two organizations register syntactically similar patterns, or if one

organization’s pattern is a strict substring of another’s, the provider must decide how to

attribute a match without leaking information about other tenants. Current Husn semantics

do not prescribe how providers should resolve such conflicts, and different providers may

adopt different policies (e.g., deterministic tie-breaking, non-attributable “collision warnings,”

or returning coarse-grained alerts).

This limitation also affects false positives: an organization could inadvertently trigger

detections based on another organization’s pattern, even though neither party learns the

other’s pattern content. Future work could explore privacy-preserving disambiguation

mechanisms, such as secure multiparty comparison of pattern ownership, cryptographic

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[18]

namespaces, or per-tenant pattern scoping that reduces the likelihood of inter-

organizational interference. Another promising direction is the development of standardized

pattern formats with optional metadata or hashing schemes that help providers detect and

prevent collisions without exposing sensitive pattern details.

Future extensions:
Several enhancements are possible:

• Semantic matching for renamed identifiers or lightly refactored code.

• Cross-provider standards for pattern registration and policy exchange.

• On-premises Husn deployments for highly sensitive environments that cannot rely on

an external service.

• Canonicalization and fingerprint-based matching to improve robustness against

formatting changes and light refactors without requiring raw code to leave provider

boundaries.

• Privacy-preserving disambiguation and namespacing mechanisms to reduce inter-

tenant collisions while minimizing pattern leakage.

• AST-based structural fingerprinting that captures code structure (e.g., function

signatures, class hierarchies, control flow patterns) rather than raw text, providing

resilience against identifier renaming, comment stripping, and whitespace

normalization.

• Control flow graph (CFG) and data flow signatures that detect characteristic program

logic even when surface-level code has been substantially rewritten.

• Machine learning-based code similarity using code embeddings or neural fingerprints

to identify semantically equivalent code across heavy refactoring or language

translation.

• Behavioral and runtime canaries that trigger based on execution patterns, API call

sequences, or telemetry rather than static code analysis.

• Stylometric detection that identifies organizational or author-specific coding patterns

(e.g., naming conventions, error handling idioms, architectural choices) as

supplementary attribution signals.

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[19]

Conclusion

AI coding assistants can deliver substantial productivity gains while introducing new

governance and security challenges. Existing client-side approaches are readily bypassed

and offer limited visibility into unmanaged environments and external adversaries.

Husn Canaries shifts detection and enforcement to AI providers by leveraging hard-to-

remove patterns embedded within code. Organizations register these patterns once, and

participating providers consult the Husn service during code ingestion and analysis. When

matches occur, Husn returns policy decisions and notifies the organization, enabling

detection and governance regardless of where or by whom the code is analyzed.

Our proof-of-concept integration with Claude Code demonstrates that this architecture is

practical: it requires modest provider-side integration, works with existing tooling (via MCP),

and supports near-real-time alerting and enforcement. We believe Husn-style canaries can

form a basis for an industry-wide approach to AI coding assistant governance.

We invite AI providers, security teams, and standards bodies to explore and iterate on this

approach. The core question is: if someone, anywhere in the world, uses an AI tool to

analyze our code, can we learn about it in time to respond?

FAQ

Q: What does “Husn” mean and how is it pronounced?

A: The name “Husn” (pronounced /èUsn/, approximately “hoosn”) comes from the Arabic

word for fortress or stronghold. Husn Canaries turns your codebase’s natural complexity

into a defensive asset, transforming existing code patterns into an early-warning system

that detects unauthorized AI analysis.

Q: Why would I put my code on Husn Canaries’ servers?

A: In practice, you are not uploading an entire repository to Husn Canaries. Instead, you

register a small set of carefully chosen patterns (identifiers, snippets, honeypots) that

already exist in your codebase. With or without Husn, code is often submitted to AI

providers today and organizations typically lack visibility when that happens. Husn Canaries

turns that reality into an actionable signal: when your code (or a stolen copy) is analyzed by

a participating AI provider, you can receive an alert and enforce policy rather than

remaining blind.

Moreover, most organizations already entrust sensitive source code to third-party platforms

(e.g., Git hosting and CI/CD providers) under access control and audit expectations. Husn

Canaries follows the same principle of minimizing exposure: you register only a limited set

of canary patterns, and the system can be deployed in modes that avoid transferring raw

code beyond what is necessary for matching (e.g., using derived representations such as

hashes or fingerprints).

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[20]

Q: Do AI providers (or Husn) need to see my raw source code?

A: Providers already receive code in order to perform AI analysis, similar in spirit to how

source hosting platforms handle proprietary repositories. Husn can be integrated so that it

does not store full repositories: organizations register small pattern sets, and providers can

submit either raw snippets (simplest) or derived fingerprints (preferred) such as token

hashes. In higher-sensitivity deployments, keyed fingerprints allow matching while keeping

the Husn service limited to org-scoped digests and policy decisions.

Q: What about collisions, where different organizations register the same canary
patterns?

A: The Husn design explicitly accounts for pattern collisions and malicious pattern

“squatting”. At a high level, the registry does not rely on any single string as a sole

attribution signal: patterns are evaluated in combination and in context, and the system

incorporates rarity, provenance, and other features to separate genuine ownership from

accidental or adversarial reuse. The concrete collision-handling mechanisms and

thresholds are part of the Husn deployment design and are not described in detail in this

paper; we outline only the core abstraction and trust model here.

Q: What about Local AI Models?

A: Local AI models are out of scope for this paper.

Q: Who can access the Husn Canaries API?

A: The Husn Canaries detection API is intended to be accessible only to participating AI

providers and is not exposed to end users. Providers authenticate server-to-server (e.g.,

with provider-issued credentials) and invoke the API as part of their request-processing

pipeline. This access model reduces the risk that an attacker could probe the API to

enumerate patterns or test evasion strategies, and helps keep canary patterns from being

revealed through the API surface.

Q: Can developers or end users query the API to check whether their code
matches a canary?

A: No. End users do not receive direct access to the Husn Canaries matching endpoint.

Instead, organizations receive alerts and enforcement outcomes through provider-

integrated controls (e.g., notify, require approval, or block) and optional organization-facing

channels such as dashboards or webhooks, without disclosing the underlying pattern

details.

Q: Is this limited only to code?

A: No. It can also be utilized for images, videos, documents, etc.

Q: Why would AI providers adopt Husn Canaries?

A: Several converging pressures make provider-side governance increasingly attractive:

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[21]

• Enterprise customer demand: Large organizations are reluctant to adopt AI coding

assistants without governance guarantees. Providers that offer verifiable controls

gain competitive advantage in enterprise sales.

• Liability and trust: Providers face reputational and legal risk if their platforms are

used to analyze stolen intellectual property. Proactive detection demonstrates good

faith and due diligence.

• Regulatory trajectory: Emerging frameworks such as the EU AI Act, evolving data

protection regulations, and sector-specific compliance requirements (e.g., HIPAA,

SOC2, FedRAMP) increasingly expect platforms to implement content governance

mechanisms. Early adoption positions providers ahead of mandates.

• Low integration cost: The technical burden is modest: a small number of API calls

during indexing and request handling. The cost-benefit ratio favors adoption,

especially when offered as an opt-in enterprise feature.

Looking ahead, AI-assisted development will become ubiquitous, and the volume of code

processed by AI providers will grow by orders of magnitude. Simultaneously, code theft,

supply chain attacks, and insider threats will continue to rise. Without provider-side

governance infrastructure, organizations will face an impossible choice: adopt AI tools and

lose visibility, or forgo productivity gains to preserve control. Husn Canaries (or similar

mechanisms) can resolve this tension by making AI adoption compatible with security and

compliance requirements. The question is not whether such systems will exist, but whether

they will be standardized and interoperable across providers.

Acknowledgments

The authors thank the research community for discussions that informed this work.

©2025 IOActive, Inc. All Rights Reserved.

Publication Date: December 22, 2025

[22]

References

[1] Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The Impact of AI on Developer

Productivity: Evidence from GitHub Copilot. https://arxiv.org/abs/2302.06590, 2023.

[2] Google Research. AI in software engineering at Google: Progress and the path ahead.

https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-

ahead/, 2024.

[3] Perplexity AI. The Adoption and Usage of AI Agents: Early Evidence from Perplexity. https:

//arxiv.org/abs/2512.07828, 2025.

[4] Cursor. Cursor: The AI Code Editor. https://cursor.sh, 2025.

[5] Anthropic. Claude Code: AI Coding Assistant. https://www.anthropic.com/claude/code, 2025.

[6] GitHub. GitHub Copilot Documentation. https://docs.github.com/en/copilot, 2025.

https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2302.06590
https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-ahead/
https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-ahead/
https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-ahead/
https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-ahead/
https://arxiv.org/abs/2512.07828
https://arxiv.org/abs/2512.07828
https://arxiv.org/abs/2512.07828
https://cursor.sh/
https://cursor.sh/
https://www.anthropic.com/claude/code
https://www.anthropic.com/claude/code
https://docs.github.com/en/copilot
https://docs.github.com/en/copilot

	Abstract
	Introduction
	The Client-Side Problem
	Contributions

	Threat Model
	Adversary Models
	Requirements

	Husn Canaries Design
	Core Concept
	Why Invisible Patterns Matter
	Detection Flow
	Pattern Types
	Enforcement Policies

	Security Analysis
	Bypass Resistance
	Robustness to Transformations
	External Threat Detection
	Comparison to Client-Side Hooks
	Operational Noise and False Positives

	Proof of Concept Implementation
	Architecture
	MCP Tool Design
	Policy Enforcement
	Architecture Diagram
	Key Demonstration Points

	Use Cases
	Compliance Enforcement
	Stolen Code Detection
	Contractor Code Retention
	Usage Tracking

	Limitations and Future Work
	Limitations
	Future extensions:

	Conclusion
	FAQ
	References

