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Abstract

Al-powered coding assistants such as OpenAl Codex, Claude Code, GitHub Copilot, and
similar tools are increasingly embedded in everyday software development workflows.
While these systems can improve productivity, they also introduce a new class of
governance and security challenges. Once source code leaves an organization via (for
example) exfiltration, contractor access, or personal devices, organizations lack reliable
visibility into whether and when that code is subsequently analyzed by cloud Al providers.

Existing solutions emphasize client-side enforcement approaches: IDE extensions, browser
controls, network proxies, lifecycle hooks, and endpoint agents. However, these measures
can be bypassed and provide no visibility into external attackers who paste stolen
repositories into Al tools outside the organization’s perimeter.

We propose using Husn Canaries, a centralized detection and policy service in which
organizations register hard-to-notice patterns already present in their codebases (e.g.,
tokens or comments, regular expressions, and intentionally placed signatures). Participating
Al providers call the Husn API during code indexing and request handling. When Husn
identifies pattern matches, it returns policy decisions (e.g., allow with logging, require
approval, or block) and emits tamper-resistant alerts back to the organization.

Our contributions are as follows:

e A threat model for Al coding assistant misuse that covers internal developers,
external contractors, and external attackers operating with stolen code.

e The design of a provider-side, pattern-based architecture that detects Al usage on
sensitive code regardless of client configuration or user identity.

e A working proof-of-concept implementation using the Model Context Protocol (MCP)
and Claude Code, demonstrating real-time enforcement and alerting.

e Adiscussion of limitations, security properties, and deployment considerations for
multi-provider adoption.

By shifting detection to Al providers and leveraging hard-to-remove in-code patterns, Husn
Canaries turns the Al ecosystem into a distributed early-warning surface for sensitive code.

A video demonstration of this concept can be found here:
https://www.youtube.com/watch?v=AtWB6DzwRVK.
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Introduction

Al coding assistants increasingly support software authoring, review, and maintenance by
providing context-aware suggestions, refactoring assistance, and automated test
generation. Studies report significant productivity gains for developers, particularly when
working with unfamiliar codebases or languages [1—4]. Commercial tools such as Claude
Code [5] and GitHub Copilot [6] are now widely integrated into modern development
workflows.

At the same time, these tools introduce governance and security challenges that existing
controls are poorly equipped to address:

e Internal governance: Security teams often lack a clear view of how, where, and by
whom Al coding assistants are used on sensitive repositories. Different teams may
use different tools and accounts (corporate and personal), making it difficult to
demonstrate compliance with regulatory requirements (e.g., HIPAA, SOC2, PCI-
DSS).

o External threats: Once source code is stolen or leaked, adversaries can paste
entire repositories into Al tools to accelerate vulnerability discovery, perform variant
analysis, and reconstruct architecture diagrams. Organizations have no visibility into
this activity and no reliable way to detect that their code is being analyzed.

¢ Enforcing “no Al” zones: Some repositories must not be analyzed by Al at all (e.g.,
highly regulated code, cryptographic implementations, or embargoed IP). Today,
enforcement typically relies on internal policy and weak client-side controls. Once the
code leaves the environment, these guarantees do not hold.

These challenges share a common root: governance is typically implemented at the client
(e.g., IDE plugins, browsers, proxies) rather than at the provider where analysis actually
occurs.

The Client-Side Problem

Organizations commonly deploy a combination of the following:

¢ IDE plugins or configuration files that disable specific Al features for certain projects.
e Browser controls or URL filtering to limit access to Al web interfaces.
¢ Network proxies that block access to unapproved Al endpoints.

e Single sign-on (SSO) or data loss prevention (DLP) tools that monitor internal traffic.

These approaches share several weaknesses:

e They assume the user is on a managed device and network.

e They cannot reliably see or control activity performed on personal machines, home
networks, or accounts outside the organization.
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e They provide no visibility into external attackers who have obtained code through
breaches, insider threats, or misconfigurations and are using Al tooling elsewhere.

e They rely on users not deliberately circumventing controls (e.g., by copy-pasting into
a browser window on a personal laptop).

In short, client-side controls can be useful for hygiene but are insufficient as a security
boundary. The only place where Al analysis of code necessarily passes is at the Al provider
itself.

Contributions

This paper introduces Husn Canaries as a defense-in-depth mechanism for Al coding
assistant governance. Our main contributions are:

e Threat model: We formalize a threat model for Al coding assistant misuse
encompassing internal developers, external contractors, and external attackers in
possession of stolen code.

e Architecture: We present Husn Canaries, a provider-side, pattern-based detection
service that allows organizations to register hard-to-notice code patterns and receive
alerts and policy enforcement when those patterns appear in Al analysis.

¢ Prototype: We implement a proof-of-concept integration with Claude Code via MCP,
including a Husn server, an organizational dashboard, a backing data store, and
example honeypot patterns embedded in a demo project.

o Evaluation: We analyze security properties, bypass resistance, and limitations, and
we outline future directions such as semantic matching and cross-provider
standards.

Threat Model

We consider a typical enterprise that owns one or more source-code repositories and
permits some forms of Al-assisted development. The goal is to detect and govern Al usage
on code assets that the organization deems sensitive.

Adversary Models

We consider four primary adversary types:

1. Internal developers: Full-time employees with authorized access to code
repositories. They may intentionally or unintentionally use Al tools on code that is
subject to stricter governance than their day-to-day workflow reflects.

2. External contractors: Third parties who are temporarily granted access to specific
repositories. After their contract ends, they may retain local copies and continue to
use Al tools on that code, outside organizational controls.
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3. External attackers: Adversaries who obtain code through data breaches, credential
theft, misconfigured object storage, or leaked backups. They may use Al tools to
rapidly triage the codebase, identify weaknesses, and plan exploitation.

4. Unauthorized recipients: Any party (e.g., former employees, partners, or recipients
of mistakenly shared archives) who was not intended to have long-term analysis
rights but nonetheless has a copy of the code.

Key insight: Internal threats (1 and 2) may be partially mitigated through endpoint and
network controls, but external threats (3 and 4) operate entirely outside the organization’s
infrastructure. The only common observation point is within Al providers when code is
submitted for analysis.

Requirements
An effective governance mechanism for Al coding assistants should satisfy the following
requirements:

1. Bypass resistance: Security should not depend on specific client configurations.
Users should not be able to evade detection simply by switching devices, networks,
or client applications.

2. Universal coverage: The mechanism should apply across IDE plugins, web
interfaces, CLls, and direct API usage within participating Al providers.

3. External threat detection: The system must detect usage by actors outside the
organization, including attackers and former contractors using personal accounts and
devices.

4. Provider-agnostic design: Patterns registered by the organization should be usable
across multiple Al providers with minimal integration work per provider.

5. Low friction for providers: Integration should be implementable as a small number
of API calls in existing indexing and request-handling pipelines, without requiring
providers to deploy new Al models.

6. Privacy and isolation: Providers should not learn the full details of registered
patterns beyond what is necessary for matching, and patterns should not be exposed
to end users in a way that would allow easy evasion.

7. Actionable outputs: When matches occur, organizations should receive enough
context (e.g., pattern identifiers, file paths, and timestamps) to triage incidents and
respond.

Husn Canaries Design

Core Concept
Husn Canaries is a centralized detection and policy service that sits between organizations
and Al providers. Its operation is conceptually simple:

[6] ©2025 10Active, Inc. All Rights Reserved.
Publication Date: December 22, 2025



1. Organizations register a set of canary patterns that are present in their codebases.
These may include distinctive identifiers, comments, structural code snippets,
filenames, configuration entries, and deliberately inserted honeypot markers.

2. Participating Al providers call the Husn APl when they ingest or analyze code. They
submit content (or derived representations such as chunks, hashes, or features)
together with metadata such as provider ID and file path.

3. Husn evaluates submissions against each organization’s registered patterns,
determines whether matches exist, and returns a policy decision (e.g., allow, notify,
require approval, block).

4. Husn simultaneously logs events and forwards alerts to the organization via
webhooks and dashboards, enabling incident response and governance reporting.

Privacy-preserving matching modes. Husn can be deployed in multiple data-handling
modes depending on organizational sensitivity and provider constraints. In the simplest
mode, providers submit content or code chunks for matching. To reduce exposure,
providers can instead submit derived fingerprints (e.g., token-level n-gram hashes or
winnowed hashes) and Husn performs matching over fingerprints only. For higher-
sensitivity deployments, organizations can register keyed fingerprints (e.g., an HMAC over
canonicalized tokens) so that Husn only sees digests and provider-side metadata rather
than full source files.

From the organization’s perspective, Husn provides a single interface: once patterns are
registered, any participating Al provider becomes a monitored surface for the organization’s
code.

Why Invisible Patterns Matter
A naive way to track sensitive code might be to add visible marker files (e.g., .husn at the
repository root) or banner comments (e.g., “Do not use with Al”). However, such
approaches are fragile:

e Markers can be removed by an attacker or omitted when copying subsets of the
repository.

¢ Visible markers reveal what triggers detection, making it easier for adversaries to
filter or obfuscate them.

e They can create noise when copied into samples, tutorials, or unrelated projects.
Instead, Husn focuses on hard-to-notice patterns that are naturally embedded within code:

e Function and class names that are unique to the organization.
¢ Internal API endpoints and protocol identifiers.
¢ Characteristic comments, headers, or error messages.

e File naming conventions (e.g., configuration or secrets files).
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e Honeypot constructs that look like normal code but are semantically inert.

e These patterns are difficult to remove at scale without breaking builds or tests, and
discovering them externally is non-trivial. The result is a robust, low-friction way to
tag code so that it can be recognized within Al providers without changing developer
workflows.

Detection Flow

At a high level, a participating Al provider integrates Husn Canaries at two points: code
ingestion (e.g., indexing a project for workspace context) and request handling (e.g., when
a user opens a file or asks a question about the code). The detection flow is:

1. Code context received: A user connects their repository or uploads files to the Al
tool. The provider’s backend receives the code and begins indexing or chunking it.

2. Pattern check: For each chunk or file, the provider sends a request to the Husn API
that includes:

Provider identifier and a pseudonymous user or workspace identifier.
Content or derived features suitable for matching.
Metadata such as file path, repository name, and interface (IDE, web, API).

3. Matching and policy evaluation: Husn checks the content against the pattern
registry for all participating organizations. When matches are found, Husn evaluates
the organization’s configured policy for each pattern.

4. Decision returned: Husn responds with:
Whether one or more patterns matched.
The organization(s) associated with those patterns.

The effective policy decision for this interaction (e.g., clear, notify,
approve, block).

Optional structured details (pattern IDs, matched types, and context).

5. Provider enforcement: The provider enforces the decision. For example:
Continue normally for clear.
Show a non-blocking banner for notify.
Pause the session and prompt the user that approval is pending for approve.
Refuse to analyze the content and display a configurable message for block.

6. Organizational response: Husn logs the event, updates the organization’s
dashboard, and optionally sends alerts via webhooks to SIEM, Slack, PagerDuty, or
an incident response system.
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1 Active.

Pattern Types

The Husn pattern registry supports several pattern types, such as raw text, identifiers,
filenames, and code snippets. An organization might register patterns like the following:

Patterns can be associated with different policies and metadata. Honeypot patterns, in
particular, are designed such that any occurrence outside controlled environments is a

"patterns": [
{
"type": "teXt",
"pattern": " ACME CANARY * ",

"policy": "block"

"type": "function",
"pattern": "acme internal *",
"policy": "notify"

"type": "variable",
"pattern": "PROPRIETARY *",
"policy": "notify"

"type": "filename",
"pattern": "*.secrets.yaml",

"policy": "block"

"type": "honeypot",
"pattern": " ACME CANARY 7f3a%bZ2e ",
"policy": "block"

"type": "code",

"pattern": "public class AcmeProprietaryCrypto { ... }",
"description": "Proprietary encryption implementation",
"policy": "approve"

strong indicator of unauthorized reuse or analysis.

Enforcement Policies
For each pattern, organizations configure one of several enforcement actions:
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e Clear: No special action. Used for tagging or analytics-only patterns.

¢ Notify: Allow the Al interaction to proceed but log and emit an alert to the
organization.

¢ Require approval: Pause the Al session and require an authorized reviewer to
approve or deny continued access. The provider receives a “pending” decision and is
expected to cache the result.

e Block: Immediately deny Al access to the matching content. The provider must
refuse to analyze the code and display a configured message.

¢ Noise control and safe defaults. In deployments with many repositories and teams,
the primary usability risk is excessive blocking or alert fatigue. A practical approach
is to start new pattern sets in Not i fy mode, measure precision, and then promote
only high-confidence patterns to Block. Providers can further reduce operational
pain by aggregating detections per workspace session, caching “pending” approval
outcomes, and requiring multiple independent matches before applying disruptive
actions.

Policies can be customized per organization and per pattern type. For example, an
organization might choose to block any access to cryptographic implementations while
simply logging use of higher-level business logic.

Security Analysis

Bypass Resistance

Because detection is implemented on Al provider infrastructure, modifications to client
devices have limited impact:

¢ Client modifications are ineffective: Users cannot evade detection by disabling
plugins, switching IDEs, or using different browsers. As long as the provider
integrates Husn within its backend pipeline, all content submitted to that provider can
be checked.

¢ Patterns are difficult to remove: Invisible patterns are embedded within function
names, class hierarchies, error messages, and configuration files. Removing them
without breaking builds, tests, or runtime behavior requires substantial effort and
expertise, particularly in large codebases.

o Pattern discovery is non-trivial: The pattern registry is not exposed to end users.
Without knowledge of which specific identifiers or structures are used as canaries,
attackers must either perform exhaustive static analysis or risk triggering honeypots.

e Personal accounts still visible: The mechanism does not depend on corporate
SSO. Even if users log into Al tools with personal accounts, the underlying provider
integration still consults Husn and can produce alerts for the organization.
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Local-only models that never interact with a participating provider are out of scope for Husn;
we discuss this limitation under Limitations and Future Work.

Robustness to Transformations
Attackers and policy-evading users may attempt to avoid triggering canaries by either
submitting only partial snippets of code or transforming code to remove or obscure patterns.
Common strategies include renaming identifiers, stripping comments, reformatting, moving
code across files, or performing light refactors with Al assistance.

Husn mitigates these attempts through three complementary mechanisms:

¢ Distributed and heterogeneous patterns: Organizations can place multiple
canaries across different layers (filenames, identifiers, configuration keys, and
honeypots) so that evasion requires multiple classes of transformations rather than a
single string edit.

¢ Canonicalization and fingerprinting: Providers can normalize submissions prior to
matching (e.g., whitespace/comment normalization or tokenization) and submit
resilient fingerprints rather than raw strings, improving robustness against formatting
changes.

¢ Multi-signal confidence: Enforcement can require multiple independent matches
within a session (e.g., two or more canaries across distinct pattern types) before
taking disruptive actions, reducing both false positives and evasion risk.

Fully semantic matching for heavily rewritten code is an important extension; we include it
as future work in Limitations and Future Work.

External Threat Detection
Husn provides a unique capability for detecting adversaries using stolen code with Al tools:

e Attackers who obtain a copy of a repository and paste it into a participating Al tool for
analysis will necessarily trigger the provider’s Husn checks.

e If the repository contains registered patterns, Husn will match those patterns and
emit alerts back to the organization, including provider-side metadata such as
timestamps and workspace identifiers.

e This holds even when the attacker is on a personal device, using a personal account,
and operating outside any corporate network controls.

This detection is not foolproof (attackers may selectively copy subsets of files, or operate
entirely offline), but it provides a new layer of visibility that did not exist previously.

Comparison to Client-Side Hooks

The table below compares Husn Canaries to client-side lifecycle hooks such as IDE
extensions and local proxies.
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I Active.

Property Client-side hooks / plugins Husn Canaries
Deployment location Developer machines (IDE, A_I provider backend (server-
browser, local agent) side)

Any use of participating Al
providers, including personal
accounts

Managed devices and networks

Scope of visibility only

Low: users can switch tools or |High: enforced centrally at

Resistance to bypass devices providers

Detection of external
attackers with stolen No
code

Yes, if attackers use
participating providers

Per-provider integration Single APl integration per

Often N/A (per-IDE)

effort provider
Impact on developer Can be intrusive; depends on Transparent; no changes to
workflow plugin design local workflow

Table 1: Comparison between client-side lifecycle hooks and the Husn Canaries provider-side
architecture.

In practice, Husn is intended to complement, not replace, client-side measures. Client
controls can prevent accidental misuse on managed devices, while Husn provides backstop
detection and governance across providers and external actors.

Operational Noise and False Positives
As with any pattern-based detection system, Husn must balance precision with usability.
Noise can arise from overly broad patterns, common substrings, copy-pasted boilerplate, or
legitimate reuse of shared components. In addition, multi-tenant deployments introduce a
subtle failure mode: when multiple organizations register overlapping patterns with the
same provider, attribution may be ambiguous and providers must avoid leaking other
tenants’ pattern structure (see: Limitations and Future Work).

Husn’s policy ladder provides a practical safety valve. A common rollout strategy is to start
new pattern sets in Notify mode, measure precision, and then promote only high-
confidence patterns (especially honeypots) to Block. Providers can reduce operational
pain by aggregating detections per workspace session, rate-limiting repeated alerts, and
caching approvals to avoid repeated interruptions during active development.

Proof of Concept Implementation

To demonstrate the practicality of Husn Canaries, we implemented a working prototype that
integrates with Claude Code using the Model Context Protocol (MCP). The prototype
mirrors the architecture that Al providers would adopt in production.
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Architecture
The proof-of-concept consists of four main components:

1. MCP server: A TypeScript-based MCP server that exposes a check _code tool to
Claude Code. Whenever Claude indexes project files, the MCP server sends their
contents and metadata to the Husn backend for pattern checking.

2. Husn backend: A backend service that stores organizations, patterns, and detection
events in a SQLite database. It exposes an HTTP API for pattern checks as well as
an administrative API for pattern management.

3. Admin dashboard: A web interface where organizations can:

Register themselves and obtain API credentials.
Define and edit canary patterns and their associated policies.
View real-time alerts, past events, and analytics.
4. Demo project: A sample codebase containing embedded honeypot patterns and

representative code structures. This project is opened in Claude Code to simulate
realistic usage.

MCP Tool Design

The check code tool is registered with Claude Code as a workspace integration. When
Claude ingests files from the demo project, it calls this tool with file content and metadata.
The MCP server then forwards a simplified request to the Husn backend, for example:

POST /v1/check

{
"provider id":
"workspace id":
"file path":
"content": "...

"src/payments/CardProcessor.cs",

"claude-code",
"demo-workspace-123",

file contents omitted for brevity ...

The Husn backend inspects the content against registered patterns and returns a response

such as:

{

"matches": [

{

"policy":
}
15

"decision":

"organization":
"pattern id":
"block"

"block"

"acme" ,
"honeypot-7£3a9b2e",

Publication Date: December 22, 2025
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The MCP server translates this into a structured result for Claude Code, which then applies
the configured Ul behavior (for example, displaying a blocking message).

Policy Enforcement
When a block decision is returned, Claude Code is instructed not to analyze the affected

project and to display a clear, user-facing message. In our prototype, the message takes
the following form:

Your organization, ACME CORPORATION, has classified this
code as sensitive. AI analysis has been blocked by
policy.

If you believe this is an error or require an exception,
please contact security@example.com and include this
reference:

HUSN-ALERT-2025-03-001.

This illustrates how provider-side enforcement can halt Al analysis of protected code mid-
session while directing the user to an appropriate escalation path.

Architecture Diagram
The diagram below illustrates the following end-to-end flow:
1. Code is accessed by an internal developer, contractor, or external attacker.

2. The user selects an Al provider (e.g., Claude Code) and connects or uploads the
code.

3. The provider indexes the code and calls the Husn API as part of its processing
pipeline.

4. The Husn Canaries service matches patterns and determines whether a policy
should be applied.

5. Policy enforcement occurs at the provider (approve, notify, or block).

6. Simultaneously, Husn notifies the organization via dashboards and webhooks so that
incident response processes can begin.

[14] ©2025 10Active, Inc. All Rights Reserved.
Publication Date: December 22, 2025



1- CODE ACCESS

Attacker with Stolen Code ‘ ’ External Contractor ‘ ‘ Internal Developer

2-M TVOLlsEu:,ECION

Al-Providers

I T T

|
3 - PROVIDER/PROCESSING

Receive Code Context ‘
|
Y

Index Files

I

r
‘ Call Husn API

4 - HUSN CANARIET SERVIC

Pattern Registry

|
Pattern Matching Engine

[
b4

Match Found?

YES

5 - POLICY ENFO%CEMENT i v

L 4
|

APPROVE: Wait for Authoriza NOTIFY: Allow and Log BLOCK: Deny Access ‘

l i
} v L3
6 - ORGANIZATION RESPON!
! Return to Al Provider Return Block to Al Provider

Webhook Notification ‘

CLEAR: Proceed Normally ‘

v

l SIEM / Slack / PagerDuty
Incident Response Team

Figure 1: High-level Husn Canaries architecture across organization,
Husn service, and Al provider.

Key Demonstration Points
The proof-of-concept validates several aspects of the Husn Canaries design:

e Patterns trigger reliably: Honeypot identifiers embedded in realistic code
comments and variables are detected as soon as the project is indexed.
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¢ Near-real-time detection: Alerts appear in the dashboard shortly after Claude Code
accesses the project, demonstrating that the architecture can support near-real-time
monitoring.

o Effective policy enforcement: The block policy prevents further Al analysis of the
demo project, even when the user is in the middle of a coding session.

¢ File-type agnostic: The prototype treats all files equally: source code, configuration
files, and documentation are scanned for registered patterns.

Readers can watch a short video of the prototype in action here:
https://www.youtube.com/ watch?v=AtWB6DzwRVk.

Use Cases

Husn Canaries supports several practical use cases for organizations adopting Al coding
assistants.

Compliance Enforcement
Highly regulated organizations (e.g., healthcare and financial services) can register patterns
associated with code that handles regulated data. Policies can be configured to block Al
analysis of these repositories outright or to require explicit approval from a compliance
officer. This provides a technical control that supports written policies and helps
demonstrate governance to auditors.

Stolen Code Detection
Organizations can register distinctive function names, protocol identifiers, and internal API
signatures from their core services. If an attacker submits stolen code to a participating Al
tool, Husn detects the patterns and alerts the organization with provider metadata. Even if
the organization cannot immediately identify the attacker, this serves as an early indicator
of compromise and a trigger for investigation.

Conftractor Code Retention
When working with external contractors, organizations can embed honeypot patterns into
the portions of the codebase shared with the contractor. If those patterns later appear in Al
analysis initiated by unknown users, Husn alerts the organization. This provides evidence
that contractor code may have been retained or redistributed beyond agreed boundaries.

Usage Tracking
Organizations may wish to understand how broadly Al coding assistants are used on their
codebases, even when no strict policy violations occur. By registering benign but distinctive
patterns (e.g., copyright headers or root package names), they can collect aggregate
statistics on Al adoption by team, repository, and provider, informing training, licensing, and
governance decisions.
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Limitations and Future Work

Husn Canaries is not a complete solution to all Al-related risks. We highlight several
limitations and potential extensions.

Limitations
Partial-code usage: Attackers and users may submit only small snippets of code to Al
tools. If those snippets do not contain registered patterns, detection will not occur. In
practice, this can be mitigated by:

e Distributing patterns across many parts of the codebase.

¢ Using patterns that naturally appear in a wide range of files (e.g., shared libraries,
logging utilities).

e Introducing dedicated honeypot constructs that are likely to be touched when
exploring the most security-sensitive components.

Pattern maintenance: Over time, codebases evolve. Patterns may be refactored away or
become less distinctive. Organizations will need processes to periodically refresh pattern
sets and validate coverage. In practice, this can be partially automated: an organization can
run a “canary mining” job that proposes candidate patterns by scoring identifiers and strings
for uniqueness, breadth of occurrence, and survivability under refactors (e.g., public APlIs,
widely referenced configuration keys, or invariant error messages). A periodic coverage
check can validate that registered canaries still exist post-refactor and continue to appear in
representative builds and tests.

Provider adoption: The architecture assumes that Al providers are willing to integrate with
Husn or a similar service. While the technical burden is low, adoption depends on customer
demand, privacy considerations, and industry alignment. A future direction is to standardize
the interface so that multiple providers and third-party services can interoperate.

Intra-provider pattern collisions: A subtle challenge arises when multiple organizations
use the same Al provider and independently register patterns that fully or partially overlap.
Because providers should not disclose the existence or structure of other customers’
patterns, collisions may lead to ambiguous detections or conservative suppression of model
outputs. For example, if two organizations register syntactically similar patterns, or if one
organization’s pattern is a strict substring of another’s, the provider must decide how to
attribute a match without leaking information about other tenants. Current Husn semantics
do not prescribe how providers should resolve such conflicts, and different providers may
adopt different policies (e.g., deterministic tie-breaking, non-attributable “collision warnings,”
or returning coarse-grained alerts).

This limitation also affects false positives: an organization could inadvertently trigger
detections based on another organization’s pattern, even though neither party learns the
other’s pattern content. Future work could explore privacy-preserving disambiguation
mechanisms, such as secure multiparty comparison of pattern ownership, cryptographic
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namespaces, or per-tenant pattern scoping that reduces the likelihood of inter-
organizational interference. Another promising direction is the development of standardized
pattern formats with optional metadata or hashing schemes that help providers detect and
prevent collisions without exposing sensitive pattern details.

Future extensions:
Several enhancements are possible:

Publication Date:

Semantic matching for renamed identifiers or lightly refactored code.
Cross-provider standards for pattern registration and policy exchange.

On-premises Husn deployments for highly sensitive environments that cannot rely on
an external service.

Canonicalization and fingerprint-based matching to improve robustness against
formatting changes and light refactors without requiring raw code to leave provider
boundaries.

Privacy-preserving disambiguation and namespacing mechanisms to reduce inter-
tenant collisions while minimizing pattern leakage.

AST-based structural fingerprinting that captures code structure (e.g., function
signatures, class hierarchies, control flow patterns) rather than raw text, providing
resilience against identifier renaming, comment stripping, and whitespace
normalization.

Control flow graph (CFG) and data flow signatures that detect characteristic program
logic even when surface-level code has been substantially rewritten.

Machine learning-based code similarity using code embeddings or neural fingerprints
to identify semantically equivalent code across heavy refactoring or language
translation.

Behavioral and runtime canaries that trigger based on execution patterns, API call
sequences, or telemetry rather than static code analysis.

Stylometric detection that identifies organizational or author-specific coding patterns
(e.g., naming conventions, error handling idioms, architectural choices) as
supplementary attribution signals.
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Conclusion

Al coding assistants can deliver substantial productivity gains while introducing new
governance and security challenges. Existing client-side approaches are readily bypassed
and offer limited visibility into unmanaged environments and external adversaries.

Husn Canaries shifts detection and enforcement to Al providers by leveraging hard-to-
remove patterns embedded within code. Organizations register these patterns once, and
participating providers consult the Husn service during code ingestion and analysis. When
matches occur, Husn returns policy decisions and notifies the organization, enabling
detection and governance regardless of where or by whom the code is analyzed.

Our proof-of-concept integration with Claude Code demonstrates that this architecture is
practical: it requires modest provider-side integration, works with existing tooling (via MCP),
and supports near-real-time alerting and enforcement. We believe Husn-style canaries can
form a basis for an industry-wide approach to Al coding assistant governance.

We invite Al providers, security teams, and standards bodies to explore and iterate on this
approach. The core question is: if someone, anywhere in the world, uses an Al tool to
analyze our code, can we learn about it in time to respond?

FAQ

Q: What does “Husn” mean and how is it pronounced?

A: The name “Husn” (pronounced /éUsn/, approximately “hoosn”) comes from the Arabic
word for fortress or stronghold. Husn Canaries turns your codebase’s natural complexity
into a defensive asset, transforming existing code patterns into an early-warning system
that detects unauthorized Al analysis.

Q: Why would | put my code on Husn Canaries’ servers?

A: In practice, you are not uploading an entire repository to Husn Canaries. Instead, you
register a small set of carefully chosen patterns (identifiers, snippets, honeypots) that
already exist in your codebase. With or without Husn, code is often submitted to Al
providers today and organizations typically lack visibility when that happens. Husn Canaries
turns that reality into an actionable signal: when your code (or a stolen copy) is analyzed by
a participating Al provider, you can receive an alert and enforce policy rather than
remaining blind.

Moreover, most organizations already entrust sensitive source code to third-party platforms
(e.g., Git hosting and CI/CD providers) under access control and audit expectations. Husn
Canaries follows the same principle of minimizing exposure: you register only a limited set
of canary patterns, and the system can be deployed in modes that avoid transferring raw
code beyond what is necessary for matching (e.g., using derived representations such as
hashes or fingerprints).
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Q: Do Al providers (or Husn) need to see my raw source code?

A: Providers already receive code in order to perform Al analysis, similar in spirit to how
source hosting platforms handle proprietary repositories. Husn can be integrated so that it
does not store full repositories: organizations register small pattern sets, and providers can
submit either raw snippets (simplest) or derived fingerprints (preferred) such as token
hashes. In higher-sensitivity deployments, keyed fingerprints allow matching while keeping
the Husn service limited to org-scoped digests and policy decisions.

Q: What about collisions, where different organizations register the same canary
patterns?

A: The Husn design explicitly accounts for pattern collisions and malicious pattern
“squatting”. At a high level, the registry does not rely on any single string as a sole
attribution signal: patterns are evaluated in combination and in context, and the system
incorporates rarity, provenance, and other features to separate genuine ownership from
accidental or adversarial reuse. The concrete collision-handling mechanisms and
thresholds are part of the Husn deployment design and are not described in detail in this
paper; we outline only the core abstraction and trust model here.

Q: What about Local Al Models?

A: Local Al models are out of scope for this paper.

Q: Who can access the Husn Canaries API?

A: The Husn Canaries detection APl is intended to be accessible only to participating Al
providers and is not exposed to end users. Providers authenticate server-to-server (e.g.,
with provider-issued credentials) and invoke the API as part of their request-processing
pipeline. This access model reduces the risk that an attacker could probe the API to
enumerate patterns or test evasion strategies, and helps keep canary patterns from being
revealed through the API surface.

Q: Can developers or end users query the API to check whether their code
matches a canary?

A: No. End users do not receive direct access to the Husn Canaries matching endpoint.
Instead, organizations receive alerts and enforcement outcomes through provider-
integrated controls (e.g., notify, require approval, or block) and optional organization-facing
channels such as dashboards or webhooks, without disclosing the underlying pattern
details.

Q: Is this limited only to code?

A: No. It can also be utilized for images, videos, documents, etc.

Q: Why would Al providers adopt Husn Canaries?

A: Several converging pressures make provider-side governance increasingly attractive:
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e Enterprise customer demand: Large organizations are reluctant to adopt Al coding
assistants without governance guarantees. Providers that offer verifiable controls
gain competitive advantage in enterprise sales.

o Liability and trust: Providers face reputational and legal risk if their platforms are
used to analyze stolen intellectual property. Proactive detection demonstrates good
faith and due diligence.

e Regulatory trajectory: Emerging frameworks such as the EU Al Act, evolving data
protection regulations, and sector-specific compliance requirements (e.g., HIPAA,
SOC2, FedRAMP) increasingly expect platforms to implement content governance
mechanisms. Early adoption positions providers ahead of mandates.

¢ Low integration cost: The technical burden is modest: a small number of API calls
during indexing and request handling. The cost-benefit ratio favors adoption,
especially when offered as an opt-in enterprise feature.

Looking ahead, Al-assisted development will become ubiquitous, and the volume of code
processed by Al providers will grow by orders of magnitude. Simultaneously, code theft,
supply chain attacks, and insider threats will continue to rise. Without provider-side
governance infrastructure, organizations will face an impossible choice: adopt Al tools and
lose visibility, or forgo productivity gains to preserve control. Husn Canaries (or similar
mechanisms) can resolve this tension by making Al adoption compatible with security and
compliance requirements. The question is not whether such systems will exist, but whether
they will be standardized and interoperable across providers.
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