

IOActive Security Advisory

Title CIRCUTOR SGE PLC1000/PLC50

Severity 1 Critical, 10 High, 3 medium

Discovered by Gabriel Gonzalez / Sergio Ruiz

Advisory Date TBD

Affected Product

• CIRCUTOR – SGE-PLC1000/SGE-PLC50 v 0.9.2 / ServicePack 140411

Timeline

• 2025-03-14: Vulnerabilities identified, disclosure process begins.

• 2025-09-30: INCIBE gets ahold of the client to fix vulnerabilities.

• 2025-10-28: INCIBE coordinates disclosure: https://www.incibe.es/en/incibe-
cert/notices/aviso-sci/multiple-vulnerabilities-circutor-products-0

Vulnerability List

Finding ID Title Total Risk Effort to Fix

GRT_PLC-

SGE100_01

Pre-Auth Memory Corruption in TACACSPLUS

Library
Critical Low

GRT_PLC-

SGE100_02
Buffer Overflow in ShowDownload Function High Low

GRT_PLC-

SGE100_03
Buffer Overflow on AddEvent Function High Low

GRT_PLC-

SGE100_04
Buffer Overflow on ShowMeterDatabase Function High Low

GRT_PLC-

SGE100_05

Command Injection and Buffer Overflow on

GetDNS, CheckPing and TraceRoute Functions
High Low

GRT_PLC-

SGE100_06
Hardcoded authentication key High Low

GRT_PLC-

SGE100_07

Several Buffers Overflow on ShowMeterPasswords

Function
High Low

GRT_PLC-

SGE100_08
Several Buffers Overflow on showMeterReport High Low

GRT_PLC-

SGE100_09

Several Buffers Overflow on

ShowSupervisorParameters Function
High Low

GRT_PLC-

SGE100_10

[PLC] Buffer Overflow On SetUserPassword

Function
High Low

GRT_PLC-

SGE100_11
[PLC] Command Injection on SetLan Function High Low

GRT_PLC-

SGE100_12
Out-Of-Bounds Read on DownloadFile Medium Low

GRT_PLC-

SGE100_14

Weak Authenticity Algorithm to Upgrade System

and Hardcoded Password
Medium Low

Detailed Findings

GRT_PLC-SGE100_01 - Pre-Auth Memory Corruption in TACACSPLUS

Library

Host(s) / File(s) tacacsplus

Category CWE-122: Heap-based Buffer Overflow

CVSSv3 10 (Critical) - CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H

CVE CVE-2025-11778

Threat and Impact

IOActive found a remotely exploitable memory corruption in the read_packet() function of the

TACACSPLUS implementation. The function reads a header from the network and allocates

memory based on the information read from the socket. As can be seen on the highlighted

code, later a integer overflow can be used to allocate a small buffer that will later be overflowed

on the second call to socketread().

The decompiled code of the affected function:

 int read_packet()
{
[...]
 if (!a1)
 return 0;
 v3 = sockread(a1, *(_DWORD *)(a1 + 16), v23, 12, 30);
 if (v3 == 12)
 {
 if ((v23[0] & 0xF0) == 192)
 {
 v2 = (int *)malloc((HIBYTE(v23[2]) | (v23[2] <<

24) | ((v23[2] & 0xFF0000u) >> 8) | ((v23[2] & 0xFF00)
<< 8)) + 12);
 memcpy(v2, v23, 0xCu);
 v4 = sockread(
 a1,
 *(_DWORD *)(a1 + 16),
 v2 + 3,
 HIBYTE(v23[2]) | (v23[2] << 24) | ((v23[2]
& 0xFF0000u) >> 8) | ((v23[2] & 0xFF00) << 8),
 30);
[...]
}

Recommendations

Make sure there are no integer overflows and that the amount of data allocated will fit the data

written.

Additional Information

During the research, it was found that the module seems to be based on the below open

source library, so further devices might be affected by this very same issue:

https://github.com/ArthurRichard/libtacplus-uClibc/blob/master/tac_packet.c

GRT_PLC-SGE100_02 - Buffer Overflow in ShowDownload Function

Host(s) / File(s) index.cgi

Category CWE-121: Stack-based Buffer Overflow

CVSSv3 8.9 (High) - CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:C/C:H/I:L/A:H

CVE CVE-2025-11782

Threat and Impact

The code uses sprintf() to format a string that includes user-controlled input from

GetParameter("meter") into the fixed-size buffer acStack_4c (64 bytes) without length

checking. An attacker can provide an overly long value for the "meter" parameter that exceeds

the 64-byte buffer size.

 void ShowDownload(undefined4 param_1,undefined4 param_2)

{
 undefined4 uVar1;
 int iVar2;
 char acStack_4c [64];

 printf("<table style=\"width:100%%;\"><tr

align=\"center\"><td class=\"RSN\" style=\"height:30px\"
> %s</td></tr></table>\n"
 ,param_1);
 puts("<table style=\"width:100%;text-
align:center;\">");
 uVar1 = GetString(0x20b);
 printf("<tr><td class=\"RIV\">%s</td></tr>",uVar1);
 sprintf(acStack_4c,"Download(\'%d\')",param_2);
 uVar1 = GetString(0x11e);
 printf("<tr><td colspan=\"4\" style=\"text-
align:right;\"><input class=\"RBS\" type=\"%s\" value=\
"%s\" onclick=\"%s\"/></td></tr>"
 ,"button",uVar1,acStack_4c);
 iVar2 = GetParameter("meter");
 if (iVar2 != 0) {
 uVar1 = GetParameter("meter");

sprintf(acStack_4c,"Request(\'MeterMenu\',\'&meter=%s\')
",uVar1); /*uvar1 is user controlled by
getParameter("meter") and acStack_4c is fixed to 64. */
 uVar1 = GetString(0x93);
 printf("<tr><td colspan=\"4\" style=\"text-
align:right;\"><input class=\"RBS\" type=\"%s\" value
=\"%s\" onclick=\"%s\"/></td></tr>"
 ,"button",uVar1,acStack_4c);
 }
 puts("</table>");
 return;
}

Recommendations

1. Replace sprintf() with snprintf(). The snprintf() function allows you to specify the maximum

number of bytes to write, preventing buffer overflows.

2. Input Validation and Sanitization

GRT_PLC-SGE100_03 - Buffer Overflow on AddEvent Function

Host(s) / File(s) index.cgi

Category CWE-121: Stack-based Buffer Overflow

CVSSv3 8.9 (High) - CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:C/C:H/I:L/A:H

CVE CVE-2025-11783

Threat and Impact

Buffer overflow vulnerability in the AddEvent() function when copying user-controlled username

input to a fixed-size buffer (48 bytes) without bounds checking. It can lead to a memory

corruption leading to potential remote code execution.

 LABEL_7:
 if (SessionStatus)
 goto LABEL_13;
 failedLoginUsername = GetParameter("user");
 AddEvent(0x1Eu, failedLoginUsername, 0);

 LABEL_13:
 successLoginUsername = GetParameter("user");
 AddEvent(0x1Cu, successLoginUsername, 0);

 int __fastcall AddEvent(unsigned int eventId, const char

*eventMessage, const char *eventDetails)
{
 int loopCounter; // r3
 int eventIndex; // r4
 int tableOffset; // r6
 int eventPriority; // r4
 time_t currentTime; // [sp+0h] [bp-24h] BYREF

 if (eventId > 0x4E)
 return 0;
 LOBYTE(loopCounter) = 0;
 for (eventIndex = 0; ; ++eventIndex)
 {
 loopCounter = (loopCounter + 1);
 tableOffset = 4 * eventIndex;
 if (g_eventDefinitionTable[4 * eventIndex] ==
eventId)
 break;
 if (loopCounter == 79)
 return 0;
 }
 time(¤tTime);
 memset(&g_eventRecord, 0, 0x70u);
 eventPriority = g_eventDefinitionTable[4 * eventIndex
+ 2];
 g_eventRecord = currentTime;
 g_eventPriorityLevel = eventPriority + 1;
 if (eventPriority == 5)

 g_eventPriorityLevel = 10;
 g_eventCategory = g_eventDefinitionTable[tableOffset +

1];
 g_eventType = eventId;
 if (eventMessage)
 strcpy(g_eventMessageBuffer,
eventMessage);/*eventMessage is the userName failed or
successed, g_eventMessageBuffer is a fixed 48 length
string */
 if (eventDetails)
 strcpy(g_eventDetailsBuffer, eventDetails);
 return addEvent(eventPriority);
}

Recommendations

Validate all user input including lengths and other user controllable data before being used.

GRT_PLC-SGE100_04 - Buffer Overflow on ShowMeterDatabase Function

Host(s) / File(s) index.cgi

Category CWE-121: Stack-based Buffer Overflow

CVSSv3 8.9 (High) - CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:C/C:H/I:L/A:H

CVE CVE-2025-11784

Threat and Impact

Buffer Overflow vulnerability due to unbounded user input being copied to a fixed-size buffer

through sprintf(). The function GetParameter("meter") retrieves user input that is directly

incorporated into a buffer without size validation. An attacker can supply an oversized input for

the "meter" parameter, causing a buffer overflow that could:

- Overwrite adjacent memory

- Corrupt the stack

- Potentially lead to arbitrary code execution

- Cause denial of service through application crashes

 void ShowMeterDatabase(void){
 char acStack_5c[64];
 int uVar4;
 int uVar3;
 uVar4 = getParatemer("meter");
 sprintf(acStack_5c,%s - ,uVar3,uVar4);
 /* acStack fixed to 64, uVar4 controlled by user */
}

Recommendations

Validate all user input including lengths and other user controllable data before being used.

GRT_PLC-SGE100_05 - Command Injection and Buffer Overflow on

GetDNS, CheckPing and TraceRoute Functions

Host(s) / File(s) index.cgi

Category CWE-78: Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')

CVSSv3 8 (High) - CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:H/A:H

CVSSv3 CVE-2025-11787

Threat and Impact

The highlighted line sprintf(command,"nslookup %s",uVar1); takes user input from

GetParameter("dns") and directly inserts it into a command string that's executed by the

system using popen(). An attacker can inject arbitrary commands by including shell

metacharacters in the DNS parameter.

 void GetDNS(void)

{
 undefined4 uVar1;
 FILE *__stream;
 char *pcVar2;
 char acStack_103c [2048];
 char acStack_83c [2048];
 char command [40];

 uVar1 = GetParameter("dns");
 /* command injection and overflow */
 sprintf(command,"nslookup %s",uVar1);
 memset(acStack_103c,0,0x800);
 memset(acStack_83c,0,2048);
 __stream = popen(command,"r");
 if (__stream != (FILE *)0x0) {
 while (pcVar2 = fgets(acStack_103c,0x800,__stream),
pcVar2 != (char *)0x0) {
 strncat(acStack_83c,acStack_103c,0x7ff);
 }
 pclose(__stream);
 }
 pcVar2 = strstr(acStack_83c,"Name:");
 if (pcVar2 == (char *)0x0) {
 ShowError(0x205);
 ShowNetTools();
 }
 else {
 ShowSuccess(0x204);
 ShowNetTools();
 uVar1 = GetParameter("dns");
 AddResultNetTools(0x207,uVar1,acStack_83c);
 }

 return;
}

 int32_t CheckPing() {
void str;
sprintf(&str, "ping -w 4 %s", GetParameter("ping"));
void var_103c;
memset(&var_103c, 0, 0x800);
void s;
memset(&s, 0, 0x800);
int32_t stream = popen(&str, "r");

 int32_t TraceRoute(){
void str;
sprintf(&str, "traceroute -I -m 20 -q 1 -w 1 %s",
GetParameter("traceroute"));
void var_103c;
memset(&var_103c, 0, 0x800);
void s;
memset(&s, 0, 0x800);
int32_t stream = popen(&str, "r");

Recommendations

• Input validation: Verify that the DNS parameter contains only valid hostname

characters

• Command sanitization: Escape or remove dangerous shell characters

• Use safer alternatives: Consider DNS resolution libraries instead of shell commands

GRT_PLC-SGE100_06 - Hardcoded authentication key

Host(s) / File(s) concentrator

Category CWE-321: Use of Hard-coded Cryptographic Key

CVSSv3 8.8 (High) - CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

CVE CVE-2025-11781

Threat and Impact

The affected firmware contains a hardcoded static authentication key . An attacker with local

access to the device can extract this key (e.g., via firmware image analysis or memory dump)

and create valid firmware upgrade packages. This bypasses all intended access controls and

grants full administrative privileges.

 }
 snprintf(
 v12,
 0xFFu,
 "openssl enc -des -d -base64 -in %sencrypt.enc -
out %sclau.sha1 -pass pass:<redacted>",
 "/tmp/updateDC/",
 "/tmp/updateDC/");
 if (system(v12))
 {

Recommendations

Use a Public Key Cryptography to authenticate upgrade packages.

GRT_PLC-SGE100_07 - Several Buffers Overflow on ShowMeterPasswords

Function

Host(s) / File(s) index.cgi

Category CWE-121: Stack-based Buffer Overflow

CVSSv3 8.9 (High) - CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:C/C:H/I:L/A:H

CVE CVE-2025-11785

Threat and Impact

Buffer Overflow vulnerability due to unbounded user input being copied to a fixed-size buffer

through sprintf(). The function GetParameter("meter") retrieves user input that is directly

incorporated into a buffer without size validation. An attacker can supply an oversized input for

the "meter" parameter, causing a buffer overflow that could:

- Overwrite adjacent memory

- Corrupt the stack

- Potentially lead to arbitrary code execution

- Cause denial of service through application crashes

 void ShowMeterPasswords(void)

{
 int iVar1;
 char *__s1;
 int iVar2;
 undefined4 uVar3;
 undefined4 uVar4;
 uint uVar5;
 int iVar6;
 int iVar7;
 char acStack_5c [64];
 uVar4 = GetParameter("meter");
 sprintf(acStack_5c,"%s -
%s",uVar3,uVar4);

 uVar3 = GetParameter("meter");

sprintf(acStack_5c,"Request(\'MeterMenu\',\'&meter=%s\')
",uVar3);
}

Recommendations

Validate all user input including lengths and other user controllable data before being used.

GRT_PLC-SGE100_08 - Several Buffers Overflow on showMeterReport

Host(s) / File(s) index.cgi

Category CWE-120: Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')

CVSSv3 8.8 (High) - CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

CVE CVE-2025-11780

Threat and Impact

Buffer Overflow vulnerability due to unbounded user input being copied to a fixed-size buffer

through sprintf(). The function GetParameter("meter") retrieves user input that is directly

incorporated into a buffer without size validation. An attacker can supply an oversized input for

the "meter" parameter, causing a buffer overflow that could:

- Overwrite adjacent memory

- Corrupt the stack

- Potentially lead to arbitrary code execution

- 1Cause denial of service through application crashes

 void showMeterReport()
{
 char acStack_60 [64];
 uVar5 = GetParameter("meter"); /* user
controlled */
 sprintf(acStack_60,"Request(\'MeterMenu\',\'&meter=

%s\')",uVar5);
}

 void showMeterReport()
{
 char acStack_60 [64];
 uVar5 = GetString(iVar4 + 0x38); /* fixed value */
 uVar6 = GetParameter("meter"); /* user controlled */
 sprintf(acStack_60,"%s -
%s",uVar5,uVar6);

}

Recommendations

Validate all user input including lengths and other user controllable data before being used.

GRT_PLC-SGE100_09 - Several Buffers Overflow on

ShowSupervisorParameters Function

Host(s) / File(s) index.cgi

Category CWE-122: Heap-based Buffer Overflow

CVSSv3 8.9 (High) - CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:C/C:H/I:L/A:H

CVE CVE-2025-11788

Threat and Impact

Buffer Overflow vulnerability due to unbounded user input being copied to a fixed-size registry

through sprintf(). The function GetParameter("meter") retrieves user input that is directly

incorporated into a buffer without size validation. An attacker can supply an oversized input for

the "meter" parameter, causing a buffer overflow that could:

- Overwrite adjacent memory

- Corrupt the stack

- Potentially lead to arbitrary code execution

- Cause denial of service through application crashes

 void ShowSupervisorParameters(void)

{
 undefined4 uVar1;
 undefined4 uVar2;
 tm *ptVar3;
 int iVar4;
 char *pcVar5;
 uint uVar6;
 undefined4 local_64; /*arm registry is 32-bits long)*/
 undefined1 local_60;
 undefined1 local_5f;
 time_t local_24;

 uVar1 = GetString(0x4f);
 uVar2 = GetParameter("meter");
 sprintf((char *)&local_64,"%s -
%s",uVar1,uVar2);
 printf("<table style=\"width:100%%;\"><tr
align=\"center\"><td class=\"RSN\" style=\"height:30px\"
> %s</td></tr></table>\n"
 ,&local_64);
 /*local_64 is fixed but uVar2 is user controlled,
so max is 32-bits long*/

 uVar1 = GetParameter("meter");

 sprintf((char
*)&local_64,"Request(\'MeterMenu\',\'&meter=%s\')",uVar1

);
/*same as above*/
}

Recommendations

Validate all user input including lengths and other user controllable data before being used.

GRT_PLC-SGE100_10 - [PLC] Buffer Overflow On SetUserPassword

Function

Host(s) / File(s) PLC Firmware

Category CWE-121: Stack-based Buffer Overflow

CVSSv3 8.9 (High) - CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:C/C:H/I:L/A:H

CVE CVE-2025-11786

Threat and Impact

The newPassword parameter is directly embedded into a shell command string via sprintf()

without any sanitization or validation, and then executed using system(). This allows an

attacker to inject arbitrary shell commands that will be executed with the same privileges as the

application.

 int __fastcall SetUserPassword(const char
*targetUsername, const char *newPassword)
{
 char shellCommandBuffer[272]; // [sp+4h] [bp-110h]
BYREF

 sprintf(shellCommandBuffer, "adduser -h /tmp -H -D

\"%s\" > /dev/null 2>&1", targetUsername);
 system(shellCommandBuffer);
 sprintf(shellCommandBuffer, "(echo \"%s\" ; sleep 1;
echo \"%s\") | passwd \"%s\" > /dev/null 2>&1",
newPassword, newPassword, targetUsername); /*
targetUsername is a fixed valued, but value come from
ManageWebMessage which probably is a message coming from
index.cgi and controlled by a user*/
 if (!system(shellCommandBuffer))
 return 1;
 PrintLog("SYSTEM: Error setting user password");
 return 0;
}

Recommendations

Validate all user input including lengths and other user controllable data before being used.

GRT_PLC-SGE100_11 - [PLC] Command Injection on SetLan Function

Host(s) / File(s) PLC Firmware

Category CWE-78: Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')

CVSSv3 9 (Critical) - CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H

CVE CVE-2025-11779

Threat and Impact

The function SetLan is invoked when new setup is applied. This new setup function is triggered

by manage web request, which can be invoked by a user when doing changes in the

"index.cgi" web application. The parameters are not being sanitized, therefore it can be lead to

command injection.

 int __fastcall SetLAN(
 const char *ipAddress,
 const char *netmask,
 const char *gateway,
 int enableDhcp,
 const char *dhcpClientId,
 const char *primaryDns,
 const char *secondaryDns)
{
 int ipSetResult; // r0
 int netmaskSetResult; // r0
 int gatewaySetResult; // r0
 int dhcpIdSetResult; // r0
 int primaryDnsSetResult; // r0
 int secondaryDnsSetResult; // r0
 char commandBuffer[292]; // [sp+0h] [bp-124h] BYREF

 if (system("/etc/init.d/S40networking.sh stop"))
 PrintError((int)"SYSTEM: Error stopping network");
 snprintf(commandBuffer, 0x100u, "ubootenv -s
ipaddr=%s", ipAddress);
 ipSetResult = system(commandBuffer);
 if (ipSetResult)
 PrintLog("SYSTEM: Error setting ipaddr %d (%s)",
ipSetResult, ipAddress);
 snprintf(commandBuffer, 0x100u, "ubootenv -s
netmask=%s", netmask);
 netmaskSetResult = system(commandBuffer);
 if (netmaskSetResult)
 PrintLog("SYSTEM: Error setting netmask %d (%s)",
netmaskSetResult, netmask);
 snprintf(commandBuffer, 0x100u, "ubootenv -s
gatewayip=%s", gateway);
 gatewaySetResult = system(commandBuffer);
 if (gatewaySetResult)

 PrintLog("SYSTEM: Error setting gatewayip %d (%s)",
gatewaySetResult, gateway);
 if (enableDhcp == 1)
 snprintf(commandBuffer, 0x100u, "ubootenv -s
dhcp=on");
 else
 snprintf(commandBuffer, 0x100u, "ubootenv -s
dhcp=off");
 if (system(commandBuffer))
 PrintLog("SYSTEM: Error setting DHCP");
 snprintf(commandBuffer, 0x100u, "ubootenv -s
dhcpiden=%s", dhcpClientId);
 dhcpIdSetResult = system(commandBuffer);
 if (dhcpIdSetResult)
 PrintLog("SYSTEM: Error setting DHCP client
identifier %d (%s)", dhcpIdSetResult, dhcpClientId);
 snprintf(commandBuffer, 0x100u, "ubootenv -s
dnsip=%s", primaryDns);
 primaryDnsSetResult = system(commandBuffer);
 if (primaryDnsSetResult)
 PrintLog("SYSTEM: Error setting primary DNS %d (%s",
primaryDnsSetResult, primaryDns);
 snprintf(commandBuffer, 0x100u, "ubootenv -s
dnsip2=%s", secondaryDns);
 secondaryDnsSetResult = system(commandBuffer);
 if (secondaryDnsSetResult)
 PrintLog("SYSTEM: Error setting secondary DNS %d
(%s", secondaryDnsSetResult, secondaryDns);
 if (system("/etc/init.d/S40networking.sh start"))
 PrintError((int)"SYSTEM: Error starting network");
 return 1;
}

Recommendations

Validate all user input including lengths and other user controllable data before being used.

GRT_PLC-SGE100_12 - Out-Of-Bounds Read on DownloadFile

Host(s) / File(s) index-cgi

Category CWE-125: Out-of-bounds Read

CVSSv3 6.5 (Medium) - CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N

CVE CVE-2025-11789

Threat and Impact

The code converts the parameter to an integer using atoi() and then uses it as an index into

the FilesDownload array with (&FilesDownload)[iVar2]. If the parameter is too large, it will

access memory beyond the bounds of the FilesDownload array, causing:

- Reading from unintended memory locations

- Potential access to sensitive information

- Possible segmentation fault/crash

 void DownloadFile(void)

{
 __off_t _Var1;
 int iVar2;
 char *pcVar3;
 char *__path;
 char *pcVar4;
 int iVar5;
 stat sStack_70;

 iVar2 = GetParameter("file"); /
 if (iVar2 != 0) {
 pcVar3 = (char *)GetParameter("file");
 iVar2 = atoi(pcVar3);
 if (iVar2 < 44) {
 pcVar3 = (char *)GetParameter("file");
 iVar2 = atoi(pcVar3);
 pcVar3 = (&FilesDownload)[iVar2];
 iVar2 = open(pcVar3,0,0);

Recommendations

Validate all user input including lengths and other user controllable data before being used.

	IOActive Security Advisory
	Affected Product
	Timeline

	Vulnerability List
	Detailed Findings
	GRT_PLC-SGE100_01 - Pre-Auth Memory Corruption in TACACSPLUS Library
	GRT_PLC-SGE100_02 - Buffer Overflow in ShowDownload Function
	GRT_PLC-SGE100_03 - Buffer Overflow on AddEvent Function
	GRT_PLC-SGE100_04 - Buffer Overflow on ShowMeterDatabase Function
	GRT_PLC-SGE100_05 - Command Injection and Buffer Overflow on GetDNS, CheckPing and TraceRoute Functions
	GRT_PLC-SGE100_06 - Hardcoded authentication key
	GRT_PLC-SGE100_07 - Several Buffers Overflow on ShowMeterPasswords Function
	GRT_PLC-SGE100_08 - Several Buffers Overflow on showMeterReport
	GRT_PLC-SGE100_09 - Several Buffers Overflow on ShowSupervisorParameters Function
	GRT_PLC-SGE100_10 - [PLC] Buffer Overflow On SetUserPassword Function
	GRT_PLC-SGE100_11 - [PLC] Command Injection on SetLan Function
	GRT_PLC-SGE100_12 - Out-Of-Bounds Read on DownloadFile

