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Executive Summary 
Microsoft Corporation (Microsoft) engaged IOActive, Inc. (IOActive) to assess the security 
threats and risks associated with the Signing Transparency (ST) service, an open platform 
built on the open-source Confidential Consortium Framework (CCF). The ST service is 
intended to be implemented within Azure to allow third parties to validate the provenance of 
the deployed software. 

CCF uses trusted execution environments (TEEs) along with decentralized computing and 
strong cryptography to allow the implementation of secure multi-party computing systems. 
The ST service extends CCF to implement a ledger that can be used to provide provenance 
for artefacts in digital supply chains—verifiable signed claims are stored in an unmodifiable 
way within a ledger managed through the ST service. The ST service does this through a 
web service API that allows verifiable claims to be submitted to and information about 
specific claims to be retrieved from the underlying ledger. Claims are constructed and 
verified as Concise Binary Object Representation (CBOR) Object Signing and Encryption 
(COSE) requests. CBOR itself is essentially a restricted binary representation of a JSON 
object. 

The underlying ledger application runs on three separate nodes, as a Kubernetes workload 
within Azure, with the ledger being managed in a distributed manner. The underlying 
compute hardware is intended to be the trusted environment provided by the AMD SEV-
SNP platform. 

Core system functionality, such as HTTP processing, deserialization, and cryptographic 
operations, are implemented within CCF itself. Beyond that, several of the underlying 
implementations are free and open-source software (FOSS), such as OpenSSL for 
cryptography and QCBOR for CBOR processing. 

The ST service requires specific operational security requirements, such as storage for the 
ledger being write-once (so it cannot be modified), as well as specific requirements for 
system bootstrap. The implementation and operation of the ST service is intended to meet 
the following claims: 

1. The ST service is transparent, attestable, and auditable.  

2. The ST service ledger is immutable, tamper-proof, tamper-evident, and auditable.  

3. The ST service provides non-repudiable and cryptographically verifiable receipts 
that guarantee inclusion of data on the ledger.   

4. The ST service ledger and policy engine are open-source and reproducible.  

5. The ST service runs in a TEE, backed by confidential computing hardware.   

6. The ST service enforces registration policies on relying parties before inclusion of 
data hashes on the ledger.   
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7. The ST service satisfies predefined registration policies associated with its code 
upgrades, and the ST service TEE code is auditable.  

8. Customers can query the ST service to view the production deployment history for 
both the ST service and the relying parties.  

9. All code upgrades to relying parties are transparent and always logged on the 
immutable ledger. 

Project Description 
From the 28th of April to the 13th of June 2025, IOActive performed a code review, dynamic 
testing, and targeted fuzzing of the ST service and underlying CCF. The primary security 
concerns for the engagement were: 

• The security of the implementation of the ST service 

• The security of components used from and exposed by the usage of CCF 

• Adherence to the security claims listed above 

The source code for CCF was retrieved from the following URL on the 14th of April 2025 
(commit 363cd4b4965de54ad2102cfa84df052e95464192):  

https://github.com/microsoft/CCF 

The source code for the ST service was retrieved from the following URL on the 14th of April 
2025 (commit e4e7473fd3f7b732f608d2e74ec9c5de62d9602a):  

https://github.com/microsoft/scitt-ccf-ledger 

An environment was set up for dynamic testing within Azure at the following URL:  

https://ioactive-dynamic-tests.confidential-ledger.azure.com/ 

Key Takeaways 
IOActive found the security posture of the ST service and the underlying CCF to be robust. 
Only four security findings were reported, three of which were only reported for 
informational purposes.  

The only finding with a security impact was a coding error that meant that attestation data 
may not be validated correctly. This issue was verified as being remediated after a fix had 
been implemented. 

The first informational finding was a potential supply chain issue with libraries being used 
for development without being cryptographically verified. The second informational issue is 
related to the use of a third-party dependency by CCF that has a known command injection 
vulnerability. However, a custom build of this dependency is used that is not affected by this 
vulnerability, and the code is not compiled; and there are security controls in place that 
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would prevent the vulnerable code from accidentally or deliberately being included in a 
production build of CCF. 

The final informational finding related to the architecture of the overall system and the 
choice to implement the ST service API on top of the CCF APIs. In principle, this exposes 
the CCF APIs (notably the Public Node API used to manage the network of trusted 
compute nodes, as well as the Governance API used to implement node consensus) along 
with the ST service API. In principle, the use of the CCF APIs and the ST service API are 
separate, whereby the Public Node API could be considered the underlying control plane, 
for example, and should be used by separate users or user groups in separate use cases. 
There is no need for a user with access to the ST service API to have access to the Public 
Node API or Governance APIs.  

Having said that, no security issues were identified in the CCF APIs and the information 
they disclosed would only be of use to an attacker who had already compromised the 
internal node network (i.e. of the containing Kubernetes workload if deployed through 
Kubernetes). Since no direct security issues were identified, restricting or removing access 
to APIs that do not need to be publicly exposed should be considered as a means of 
reducing the attack surface; however, the cost of doing this should be balanced against the 
potential impact. It should be noted that, due to the use of a shared underlying 
implementation, functionality such as CBOR/COSE or HTTP processing will still be 
available and will not be affected by any attack surface reduction measures.  

The ID of a node could be returned in specific error messages from CCF through the ST 
service; however, the node ID is a digest of the node’s public key, as such is considered 
public, and so does not present a security risk and was not reported as such. 

Regarding the security claims outlined above, since the implementation and architecture 
were in scope, claims affected by these aspects of the system were validated. Claims that 
rely on specific deployment or operational choices require validation based on an actual 
production deployment and were not evaluated. IOActive made the following observations 
regarding the claims: 

1. The service is transparent, auditable, and attestable based on the analysis 
performed. Specifically, the service relies on well-established cryptographic 
principles. 

2. The ST service ledger is immutable tamper-proof, tamper-evident, and auditable 
based on access through the ST service API. Actual physical tamper-proofness or 
tamper-evidence depends on the underlying hardware used to store the ledger, 
which is intended to be storage that is essentially write-once. 

3. The ST service uses the cryptographic functionality implemented within and 
exposed through CCF to provide non-repudiable and cryptographically verifiable 
receipts that guarantee inclusion of data on the ledger. 
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4. The implementations of both the ST service and CCF are open source and were 
audited as part of this assessment. The ST service itself can be verified within a 
deployment as it is added to the ledger as part of the bootstrap process. 

5. The underlying hardware was out of scope for this assessment and would need to 
be verified per-deployment; however, the use of a TEE, such as AMD SEV-SNP, 
provides the necessary secure environment to support the aims of the ST service. 

6. The ST service requires user registration and relies on strong cryptographic 
principles for request validation; however, user access must be set up as part of the 
bootstrap process. 

7. Registration policies are configurable for an ST service deployment, and TEE code 
is auditable. 

8. Deployment history is recorded in a non-modifiable manner in the underlying 
ledger. 

9. Code upgrades/modifications must be recorded in the ledger before they can be 
executed. 

As noted in the comments on the security claims and elsewhere within this report, aspects 
of the system’s security and security claims are reliant on appropriate operational security 
measures. This applies in particular to the underlying hardware and the bootstrap process. 
These areas were out of scope for this assessment, but in terms of providing assurance to 
third parties, it would be important to provide direct assurance regarding the underlying 
system hardware actually used and that it meets the relevant requirements, as well as to 
provide assurance about the bootstrap of a given deployment. 

Since bootstrap will include the provision of system secrets, system users, and initial 
system code, this inherently creates the root-of-trust for an ST service deployment without 
necessarily relying on a root-of-trust—one of the fundamental aims of the bootstrap process 
is to move from untrusted to trusted. Ideally, the initial bootstrap itself should be repeatable 
and verifiable, allowing the bootstrapped state to be verified. Although of limited scope as 
an attack, bootstrapping with a compromised TEE and compromised ST service could allow 
malicious changes to be transparently made later. In essence, this is no different from 
underlying cryptographic material being compromised, allowing an attacker to post 
malicious updates to the ledger.  

Consequently, aspects of the operational security of an ST service deployment should also 
be made transparent to provide the maximum level of assurance possible. Equally, some 
level of trust is necessary, as absolute assurance cannot reasonably be gained. 

Notwithstanding these aspects of the system, IOActive validated the ST service security 
claims where appropriate and no meaningful implementation or architectural security issues 
were identified. As such, the ST service implements an appropriate solution as designed 
and implemented for its intended use.  
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IOActive would like to highlight the Temporal Logic of Actions (TLA+) formal specification 
used to describe and model the consistency and consensus algorithms for CCF. This 
specification provides a formal validation of these algorithms against attacks, such as race 
conditions, that may impact the implementation of something like a distributed ledger. The 
TLA+ modelling is openly available as part of the CCF open-source implementation. 
Additionally, IOActive would like to highlight the threat model provided at the beginning of 
the assessment, which suitably covered the potential threats that an ST service deployment 
could face. Along with the implementation itself and discussions regarding hardware and 
deployment, this indicates an appropriate level of concern and attention to the security of 
the ST service, considering its intended use. 
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Analysis of Findings 
Figure 1 shows the distribution of findings by risk rating. 

 

Figure 1. Distribution of Findings 

IOActive identified one medium-risk vulnerability in Microsoft’s in-scope assets, as well as 
three informational findings. 

The medium-risk issue was a typographical error that means that attestation data is not 
completely correctly validated by CCF and the use of third-party libraries without 
verification. This issue has been verified as being fixed. 

The informational findings were the ST service and CCF exposing information about the 
deployment and a command injection vulnerability in the QuickJS engine. IOActive did not 
identify a way to exploit these issues during the time allocated for the assessment. 
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Next Steps 
IOActive recommends considering fixing the issues presented in this report to improve the 
security posture of the in-scope assets. Once Microsoft has addressed the findings, 
IOActive further recommends performing remediation validation testing to confirm that the 
findings are properly fixed. 

IOActive believes the most advantageous, efficient, and effective way to accomplish 
remediation is to start by focusing on vulnerabilities that are high-risk and low effort to fix. 
After these are fixed, the organization should focus on the remaining high-risk and more 
complex vulnerabilities.  

Table 1. Remediation status 

Finding ID Title Total Risk Effort to 
Fix 

Status as of 
Report Date 

#ST-01 [CCF] Incorrect Verification in 
verify_snp_attestation_report() Medium Low Fixed 

#ST-05 [CCF] Insufficient Checks for Third-party 
Dependencies Informational Low  

#ST-04 [QuickJS] Command Injection Informational Low  

#ST-03 [ST] CCF Internal Configuration Disclosed 
via CCF Public API Informational Medium  

Important    The effort to address vulnerabilities is an estimate reflecting the 
assessment team’s experience; actual remediation effort may vary based on 
numerous factors including skill sets, process efficiency, and available resources. 
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Technical Summary 
Scope 

The in-scope systems comprise the ST service, which implements a ledger that can be 
used to provide provenance for artefacts in digital supply chains—verifiable signed claims 
are stored in an unmodifiable way within a ledger managed through the ST service. The ST 
service is intended to be used within Azure by the Azure Resource Manager (ARM) to 
provide a level of assurance around the components built and used on top of a trusted 
computing platform.  

The underlying implementation has unified processing of HTTP requests that provides the 
APIs exposed from the ST service and CCF: 

• The ST service API for querying and adding authenticated entries to the artefact 
ledger 

• CCF Public Node API for trusted compute node management 

• CCF Governance API for management of consensus and node network constitution 

These implementations are open source and intended to be publicly verifiable. 

CCF provides the data serialization, ledger, and cryptographic functionality used by the ST 
service, with low-level data processing functionality in turn being implemented using third-
party components such as OpenSSL and QCBOR. 

The aim of the assessment was to look for potential vulnerabilities within the ST service and 
the underlying CCF system that would impact the security of the ST service and its ability to 
function as intended, particularly those that could be exploited to compromise the ST 
service or CCF service and add unauthorized ledger entries or modify existing ledger 
entries. 

Project Approach 
The consultants aimed to identify issues within the following broad areas based on the 
specific abstractions split across the ST service/CCF system as a complete unit: 

• Implementation, which includes hardware, language, and low-level platform features 
where appropriate and addresses baseline platform security as well as code 
correctness and data processing 

• System logic, which includes the higher-level behavior of the system and addresses 
behavior that is relevant from a cybersecurity perspective (e.g. authorization or 
auditing) 

• System architecture, which includes the definition and enforcement of security 
contexts and the trust boundaries between them 
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• System configuration, which can be the storage, use, or management of any 
security-relevant configuration of hardware, first- or third-party code, or deployment 
and management mechanisms 

The broad, high-level, security-related areas of concern for a given system are as follows: 

• Authentication/authorization 

• Input/data/request validation 

• Data/information security (both data-at-rest and data-in-transit) 

• System auditing 

The assessment was divided into three phases: 

• Initial project ramp-up 

• Source code review 

• Deployed instance dynamic assessment 

The initial project ramp-up provided the consultants with the information necessary to 
broadly understand the in-scope systems and code and was provided as an initial meeting 
as well as access to internal documentation including the security claims as well as a threat 
model. 

The source code for the ST service and CCF was primarily C++ with some JavaScript for 
CCF applications as well as Python for testing and scripting. Consequently, the primary 
concern regarding implementation security was the correctness of data processing and 
input validation. When auditing data-processing code, the aim is to determine edge cases 
whereby the data processing implementation is not correctly defined for the input. This may 
be due to a programming error or assumptions about the data received. For C++ code, the 
implementation not being correctly defined typically leads to undefined behavior at the 
programming-language level. Often the practical manifestation of undefined behavior is 
memory corruption, which in turn may be exploitable for arbitrary code execution by 
corrupting execution metadata (e.g. function or return pointers). 

Input validation should involve checking any flags or enumerations have valid values, 
including logically valid for their intended usage, as well as checking data sizes and array 
access to ensure that only valid data is read and written. This is of particular importance for 
data deserialization. The primary concerns related to input validation for the in-scope APIs 
since state-altering requests are authenticated as signed messages containing data in a 
binary format. 

Regarding system logic, the primary concern is the correct logical behavior of security-
relevant functionality. Logic flaws are not language-specific and may relate to assumptions 
about the sequence in which specific APIs may be called to enact a given operation or 
about the state of a system when a specific operation is requested. The primary concern 
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from a logical perspective for the in-scope systems is the use of the functionality exposed 
by the CCF APIs and whether this is appropriate for the use of the ST service. 

Finally, regarding system architecture, the primary concern is the implementation of security 
boundaries between different system components: the compartmentalization of functionality 
based on user or component privileges. A rigorous security architecture will require a root-
of-trust that can then be used to establish identity for system components and system 
users, from which the correct compartmentalization can be derived. The failure to 
implement these boundaries, or the failure to implement them correctly, can lead to 
significant and costly security flaws. The system uses and implements a strong definition of 
identity, both user as well as software, based on strong cryptographic principles. As such, 
any architectural concerns relate to the separation between the services exposed by the ST 
service/CCF, as well as the establishment of the root-of-trust itself. The establishment of a 
root-of-trust inherently touches on implementation details as well, such as underlying 
hardware, and was beyond the scope of this assessment. 

Bearing the above concepts and abstractions in mind, the source code was analyzed from 
the primary perspective of the ST service, but reached into areas of the CCF codebase that 
directly supported the ST service functionality to capture complete attack or data-
processing paths. 

Regarding the correctness of the underlying CCF implementations for consensus and 
consistency, which essentially implement the ledger, the consultants noted that formal 
specifications were created using TLA+. IOActive did not independently verify either the 
correctness of these specifications or that TLA+ itself validated these specifications; 
however, the use of a formal language such as TLA+ is an excellent and commendable 
way to demonstrate the robustness of the design of the consensus and consistency 
algorithms, particularly regarding operational sequencing that may lead to race conditions 
(which would be of concern for a multi-party ledger). 

The dynamic assessment focused on manually confirming understanding of the ST service 
deployed in an environment specifically set up for this security assessment. The API 
endpoints were enumerated based on the source code, as well as by interrogating the API 
itself (since endpoints can be registered to be discoverable through a dedicated query API). 
Manual API testing used a combination of command line tools (e.g. cURL) and web 
application testing software (e.g. Burp Suite). Manual testing focused on the logical 
functionality implemented within the API, such as authentication and authorization of 
requests (e.g. testing data signed by an untrusted authority), as well as well-known 
malformed test cases for requests such as excessively large requests. 

Processing of complex binary data was performed using a basic bit-flipping fuzzer. Given 
the time constraints and the fact that the majority of binary data processing was performed 
at the level of CBOR/COSE processing, the consultants judged simple manipulation of the 
COSE message to be suitable for this purpose—the message must be deserialized, and 
partly processed, correctly before it can be validated. The actual signed payload can be 
arbitrary, so was not considered during the assessment. 



 

Approved for public release by Microsoft and IOActive on 01-Oct-2025 [11] 

The following Python implementation was used to generate 100,000 test cases, which were 
sent to the ST service API at a rate that would not risk creating a denial-of-service (DoS) 
attack. As noted above, the HTTP and CBOR/COSE processing is common to all the ST 
service and CCF APIs, and so this testing is applicable to CCF as well as the ST service 
even though the ST service API was not specifically targeted. 

import sys; 
import random; 
 
def main(): 
    args = sys.argv[1:] 
     
    if len(args) != 2: 
        print("Usage: python bitflip.py [infile] [tests]") 
        return 
         
    file = args[0] 
    test = int(args[1]) 
     
    f = open(file, 'rb') 
    inbin = f.read() 
    binlen = len(inbin) 
    outbin = bytearray(binlen) 
     
    for x in range (0, test): 
        outbin[:] = inbin 
         
        flips = random.randrange(1,5) 
         
        for flip in range(flips): 
            flipbyte = random.randrange(binlen) 
            flipbit = 1 << random.randrange(8) 
             
            outbin[flipbyte] = outbin[flipbyte] ^ flipbit 
             
        outfile = open(".\\out\\" + file + "-" + str(x), "wb")  
        outfile.write(outbin) 
        outfile.close() 
 
if __name__=="__main__": 
    main() 

The consultants also ran an instance of the Fuzzilli JS engine fuzzer on the QuickJS 
engine. The intent was to identify any vulnerabilities that could be exploited through ballot 
or policy scripts. No reproducible crashes were observed in the timeframe of the 
assessment. 

Finally, the CCF APIs were manually inspected to determine what functionality was 
available as well as what information was retrievable, with a view to determining the 
security impact on the ST service API itself. 
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Detailed Findings 

#ST-01 - [CCF] Incorrect Verification in verify_snp_attestation_report() [FIXED] 
Host(s) / File(s) CCF-main\src\js\extensions\snp_attestation.cpp 

Category CWE-697: Incorrect Comparison 

Testing Method White Box 

Tools Used VS Code 

Likelihood High (4) 

Impact Low (2) 

Total Risk Rating Medium (8) 

Effort to Fix Low 

CVSS 5.3 (Medium) - CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:N/I:H/A:N 

  

Threat and Impact 

The verify_snp_attestation_report() function does not correctly verify all the attestation 
data. The function uses data that is valid but in an unspecified state due to repeated calls to 
std:move() on the same variable. 

verify_snp_attestation_report():186 

 auto attestation_host_data = 
      jsctx.new_array_buffer_copy(attestation.host_data); 
    JS_CHECK_EXC(attestation_host_data); 
    JS_CHECK_SET(a.set("host_data", 
std::move(attestation_host_data))); 
  
    auto attestation_id_key_digest = 
      jsctx.new_array_buffer_copy(attestation.id_key_digest); 
    JS_CHECK_EXC(attestation_id_key_digest); 
    JS_CHECK_SET(a.set("id_key_digest", 
std::move(attestation_id_key_digest))); 
  
    auto attestation_author_key_digest = 
      
jsctx.new_array_buffer_copy(attestation.author_key_digest); 
    JS_CHECK_EXC(attestation_author_key_digest); 
    JS_CHECK_SET( 
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      a.set("author_key_digest", 
std::move(attestation_id_key_digest))); 
  
    auto attestation_report_id = 
      jsctx.new_array_buffer_copy(attestation.report_id); 
    JS_CHECK_EXC(attestation_report_id); 
    JS_CHECK_SET(a.set("report_id", 
std::move(attestation_id_key_digest))); 
  
    auto attestation_report_id_ma = 
      jsctx.new_array_buffer_copy(attestation.report_id_ma); 
    JS_CHECK_EXC(attestation_report_id_ma); 
    JS_CHECK_SET(a.set("report_id_ma", 
std::move(attestation_report_id_ma))); 

There is one correct attestation of attestation_id_key_digest and a call to std::move() 
followed by two further attestations that reuse attestation_id_key_digest rather than the 
variable that seems appropriate. 

Additionally calling std::move() leaves the argument in a valid but unspecified state, meaning that 
the repeated attestations are using unspecified data, which could lead to unexpected behavior. 

Recommendations 

The issue appears to be a copy/paste issue where the repeated pattern has been copied, pasted, but 
not appropriately corrected. The code should be modified to attest the appropriate data field for that 
particular check in question; this will also prevent the use of unspecified data. 

Additional Information 

https://en.cppreference.com/w/cpp/utility/move 
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#ST-05 - [CCF] Insufficient Checks for Third-party Dependencies 
Host(s) / File(s) tla/install_deps.py 

Category CWE-325: Missing Cryptographic Step 

Testing Method Manual 

Tools Used Sublime 

Likelihood Informational (1) 

Impact Informational (1) 

Total Risk Rating Informational (1) 

Effort to Fix Low 

CVSS 0.0 (Informational) - CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N 

  

Threat and Impact 

The CCF framework uses various third-party libraries and tooling. Some of the dependencies, like 
LLVM for cross compilation, are cryptographically validated before being installed in a dev 
environment.  

The framework uses TLA+ (a formal specification language) as a dependency. TLA+ is downloaded as 
a JAR file or compressed binaries without being cryptographically checked. An attacker who 
compromises the TLA+ repositories or takes over the TLA domain would be able to get code execution 
on systems running CCF. 

The following code is from tla/install_deps.py: 

 def fetch_latest(url: str, dest: str = "."): 
    subprocess.Popen(f"wget -N {url} -P /tmp".split()).wait() 
    file_name = url.split("/")[-1] 
    file_path = f"/tmp/{file_name}" 
    assert os.path.exists(file_path) 
    bin_path = None 
  
    if file_name.endswith(".bin"): 
        os.chmod(file_path, os.stat(file_path).st_mode | 
stat.S_IEXEC) 
        subprocess.Popen(f"{file_path} -d 
{dest}".split()).wait() 
        bin_path = f"{dest}/bin" 
  
    elif file_name.endswith(".tgz"): 
        with tarfile.open(f"/tmp/{file_name}") as tar: 
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            tar.extractall(dest) 
            rel_bin_path = next( 
                member.name for member in tar.getmembers() if 
"bin" in member.name 
            ) 
            bin_path = os.path.join(dest, rel_bin_path) 
  
    elif file_name.endswith(".jar"): 
        shutil.copyfile(file_path, os.path.join(dest, 
file_name)) 
  
    if bin_path is not None: 
        append_bashrc(f"export PATH:$PATH:{bin_path}") 
  
fetch_latest( 
        url="https://nightly.tlapl.us/dist/tla2tools.jar", 
        dest=TLA_DIR, 
    ) 

 

Recommendations 

The use of TLA+ is provided as an example within the assessed codebase, is not used in the CCF/ST 
service build process and is not deployed as part of a production system. As such, this issue is raised 
for informational purposes. 
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#ST-04 - [QuickJS] Command Injection  
Host(s) / File(s) QuickJS 

Category CWE-78: Improper Neutralization of Special Elements used in an OS 
Command ('OS Command Injection') 

Testing Method Manual 

Tools Used Manual 

Likelihood Informational (1) 

Impact Informational (1) 

Total Risk Rating Informational (1) 

Effort to Fix Low 

CVSS 0.0 (Informational) - CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N 

  

Threat and Impact 

The CCF framework uses QuickJS as the JavaScript engine to interpret ballot and policy scripts. Each 
of the scripts would execute with separation provided by individual executions of the engine per script. 
Information between scripts is shared using key-value pairs; however, the QuickJS engine has a 
command injection vulnerability in the std.urlGet function. A URL that contains a command injection 
payload will be executed as an OS command.  

Additionally, an attacker could also use the std.popen function to execute OS commands. This would 
breach the security boundary provided by the engine. This vulnerability is not applicable for CCF or the 
ST service ledger as the QuickJS contexts within these applications do not allow the execution of std 
functions. This was tested by the consultants. 

The following was run on a regular QuickJS interpreter: 

 localhost:~# qjs 
QuickJS - Type "\h" for help 
qjs > std.urlGet(";touch /tmp/ioactive;") 
sh: : Permission denied 
null 
qjs > 
(Press Ctrl-C again to quit) 
qjs > 
localhost:~# ls /tmp/ 
ioactive 
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The consultants also verified that the std module cannot be accessed from within the policy scripts by 
creating a policy script that attempted to access std.urlGet: 

 COSE_CLAIMS_PATH="demo-poc/payload.sig.cose" 
OUTPUT_FOLDER="demo-poc" ./demo/cts_poc/3-client-demo.sh                                       
  
Setting up environment 
  
Getting service parameters 
  % Total    % Received % Xferd  Average Speed   Time        
Time  Current 
                                 Dload  Upload   Total   Spent    
Left  Speed 
100   776  100   776    0     0  42970      0 --:--:-- --:--:-
- --:--:-- 43111 
  
Submitting claim to the ledger and getting receipt for the 
committed transaction 
2025-06-13 14:05:54.288 | DEBUG    | 
pyscitt.client:request:402 - POST /entries 400 PolicyError 
2025-06-13 14:05:54.288 | ERROR    | 
pyscitt.client:request:432 - Request failed: PolicyError Error 
while applying policy: ReferenceError: 'std' is not defined 
    at apply (configured_policy) 
  
Traceback (most recent call last): 
  File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/venv/bin/scitt", line 8, in <module> 
    sys.exit(main()) 
             ~~~~^^ 
  File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/pyscitt/pyscitt/cli/main.py", line 47, in main 
    args.func(args) 
    ~~~~~~~~~^^^^^^ 
  File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/pyscitt/pyscitt/cli/register.py", line 61, in cmd 
    register_signed_statement( 
    ~~~~~~~~~~~~~~~~~~~~~~~~~^ 
        client, 
        ^^^^^^^ 
    ...<2 lines>... 
        args.skip_confirmation, 
        ^^^^^^^^^^^^^^^^^^^^^^^ 
    ) 
    ^ 
  File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/pyscitt/pyscitt/cli/register.py", line 34, in 
register_signed_statement 
    submission = 
client.submit_signed_statement_and_wait(signed_statement) 
  File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/pyscitt/pyscitt/client.py", line 558, in 
submit_signed_statement_and_wait 
    resp = self.post( 
        "/entries", 
        headers=headers, 
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        content=signed_statement, 
    ) 
  File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/pyscitt/pyscitt/client.py", line 462, in post 
    return self.request("POST", *args, **kwargs) 
           ~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ 
  File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/pyscitt/pyscitt/client.py", line 433, in request 
    raise response_error 
pyscitt.client.ServiceError: PolicyError: Error while applying 
policy: ReferenceError: 'std' is not defined 
    at apply (configured_policy) 

 

Recommendations 

The custom build of QuickJS used by CCF does not currently use this functionality - as such, this issue 
is raised for informational purposes. Security controls are in place to ensure that this functionality 
should not be re-enabled in a production build. 
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#ST-03 - [ST] CCF Internal Configuration Disclosed via CCF Public API 
Host(s) / File(s) CCF 

Category CWE-200: Exposure of Sensitive Information to an Unauthorized Actor 

Testing Method Manual 

Tools Used Burp Suite 

Likelihood Informational (1) 

Impact Informational (1) 

Total Risk Rating Informational (1) 

Effort to Fix Medium 

CVSS 0.0 (Informational) - CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N 

  

Threat and Impact 

The CCF provides two APIs for programmatic control and governance functionality of the nodes 
compromising a confidential computing network: the CCF Public Node API and the CCF Governance 
API. The ST service provides additional API endpoints on top of the underlying framework that then 
implement the specific secure ledger containing signed claims about digital artifacts to be executed on 
a given compute node. The Public Node API implements the control plane for nodes, with request 
authentication implemented using signed requests, as well as multiple read-only endpoints that provide 
information about the system. The CCF Governance API implements the underlying system that allows 
node behavior to be configured as well as nodes to submit proposals to the node network, with request 
authentication also implemented using signed requests. 

Both APIs provide a significant amount of information about a given the ST service deployment, the 
majority of which may only be of use during system bootstrap. This includes information about the 
Kubernetes deployment, as well as network configuration. This information itself does not currently 
facilitate compromise of a deployment, and no security flaws were found within the ST service or CCF 
API; consequently, this issue has been rated as informational. 

For example, the following request was sent to the demo environment used during the assessment:  

 GET /node/network/nodes HTTP/1.1 
Host: 134.33.167.10 
Content-Length: 0 

 

The response to this request was as follows: 

 HTTP/1.1 200 OK 
content-length: 2729 
content-type: application/json 
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x-ms-ccf-transaction-id: 6.1280 
  
{ 
  "nodes": [ 
    { 
      "last_written": 660, 
      "node_data": { 
        "containerImage": 
"confidentialledgeracrprod.azurecr.io/scitt-
snp:0.14.0_1.0.030401-efd79a15", 
        "kubernetesNamespace": "00000000-0000-0000-0000-
c90288598eec", 
        "ledgerName": "ioactive-dynamic-tests", 
        "nodeName": "accledger-0", 
        "vmName": "vn2-zone-3-virtualnode-0" 
      }, 
      "node_id": 
"8c25fc51bbaa97d63e23a005dd31f216bb2fe40e7bdb615262ec1d6b3fa24
7e7", 
      "primary": true, 
      "rpc_interfaces": { 
        "node": { 
          "bind_address": "0.0.0.0:16386", 
          "endorsement": { 
            "authority": "Node" 
          }, 
          "published_address": "10.2.0.7:16386" 
        }, 
        "operator": { 
          "bind_address": "0.0.0.0:16387", 
          "endorsement": { 
            "authority": "Service" 
          }, 
          "published_address": "10.2.0.7:16387" 
        }, 
        "primary": { 
          "bind_address": "0.0.0.0:16385", 
          "endorsement": { 
            "authority": "Service" 
          }, 
          "http_configuration": { 
            "max_body_size": "1MB" 
          }, 
          "published_address": "10.2.0.7:16385" 
        } 
      }, 
      "status": "Trusted" 
    }, 
    { 
      "last_written": 25, 
      "node_data": { 
        "containerImage": 
"sha256:08670dc8b7ea1520381d5742c7b21c78deeb095de0d85db368e4f0
b0357fb576", 
        "containerImageId": 
"confidentialledgeracrstaging.azurecr.io/scitt-
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snp@sha256:c6a119e92e381a94c058c96e5adb080968bb4db1fc4944db4ab
3c7389f15804c", 
        "kubernetesNamespace": "00000000-0000-0000-0000-
c90288598eec", 
        "ledgerName": "ioactive-dynamic-tests", 
        "nodeName": "accledger-2", 
        "vmName": "vn2-virtualnode-0" 
      }, 
      "node_id": 
"6e90ee3e86dceaae014223fa2ad464df50eb2a49eebcd513e7efc3b3b7dd6
84b", 
      "primary": false, 
      "rpc_interfaces": { 
        "node": { 
          "bind_address": "0.0.0.0:16386", 
          "endorsement": { 
            "authority": "Node" 
          }, 
          "published_address": "10.2.0.14:16386" 
        }, 
        "operator": { 
          "bind_address": "0.0.0.0:16387", 
          "endorsement": { 
            "authority": "Service" 
          }, 
          "published_address": "10.2.0.14:16387" 
        }, 
        "primary": { 
          "bind_address": "0.0.0.0:16385", 
          "endorsement": { 
            "authority": "Service" 
          }, 
          "http_configuration": { 
            "max_body_size": "1MB" 
          }, 
          "published_address": "10.2.0.14:16385" 
        } 
      }, 
      "status": "Trusted" 
    }, 
    { 
      "last_written": 675, 
      "node_data": { 
        "containerImage": 
"sha256:08670dc8b7ea1520381d5742c7b21c78deeb095de0d85db368e4f0
b0357fb576", 
        "containerImageId": 
"confidentialledgeracrstaging.azurecr.io/scitt-
snp@sha256:c6a119e92e381a94c058c96e5adb080968bb4db1fc4944db4ab
3c7389f15804c", 
        "kubernetesNamespace": "00000000-0000-0000-0000-
c90288598eec", 
        "ledgerName": "ioactive-dynamic-tests", 
        "nodeName": "accledger-1", 
        "vmName": "vn2-zone-2-virtualnode-0" 
      }, 
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      "node_id": 
"913b99df07bffbc58ae8acbcbd9e868a09861437920a94db95675e925ee52
62a", 
      "primary": false, 
      "rpc_interfaces": { 
        "node": { 
          "bind_address": "0.0.0.0:16386", 
          "endorsement": { 
            "authority": "Node" 
          }, 
          "published_address": "10.2.0.19:16386" 
        }, 
        "operator": { 
          "bind_address": "0.0.0.0:16387", 
          "endorsement": { 
            "authority": "Service" 
          }, 
          "published_address": "10.2.0.19:16387" 
        }, 
        "primary": { 
          "bind_address": "0.0.0.0:16385", 
          "endorsement": { 
            "authority": "Service" 
          }, 
          "http_configuration": { 
            "max_body_size": "1MB" 
          }, 
          "published_address": "10.2.0.19:16385" 
        } 
      }, 
      "status": "Trusted" 
    } 
  ] 
} 

A limited amount of information has been highlighted, but as can be seen, details such as Kubernetes 
namespace, internal IP addresses and ports, as well as VM information, are provided. 

Recommendations 

Although the assessment of the ST service and CCF APIs did not discover any direct security 
weaknesses, and the information provided does not weaken the security of the system as it is, reducing 
the amount of information provided to arbitrary third-parties as well as restricting access to these APIs 
in order to reduce the available attack surface means that restricting access to the Node and 
Governance APIs (where practical) may be beneficial from a security perspective.  

As is often the case, there is a partial conflict between security and usability. APIs should only be 
restricted where it has no practical impact on the use of an ST service deployment. Additionally, since 
the system is intended to provide a verifiable way of assessing the provenance of systems deployed on 
top of the ST service within Azure, it may be desirable to keep all APIs open and accessible for the 
sake of transparency 

Finally, it is worth highlighting that in terms of attack surface reduction, this will only impact higher-level 
logical functionality within the Node and Governance endpoints; functionality such as COSE 
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processing, CBOR processing, and low-level HTTP-processing is shared between all APIs and as such 
will still be exposed through the ST service API endpoints. 
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Appendix A: Overview of Detailed Findings  
Host(s) / File(s) 

This section includes a list of the assets affected by the finding. 

Category 
IOActive uses Common Weakness Enumeration (CWE™)1 identifiers to categorize each 
finding. CWE is a community-developed list of software and hardware weakness types that 
have security ramifications. This software assurance strategic initiative is sponsored by the 
National Cyber Security Division of the U.S. Department of Homeland Security and 
published by The MITRE Corporation. 

Testing Method 
The testing method captures the approach that the consultants used to discover the finding. 

Table 2. Examples of testing methods 

Method Description 

Black Box The consultants had no internal knowledge of the target and were not 
provided with any information that was not publicly available. 

Grey Box 
The consultants had access and knowledge levels comparable to a 
user, potentially with elevated privileges. The consultants may also 
have been provided documentation, accounts, or other information. 

White Box The consultants had full access to the target’s source code, 
documentation, etc. 

Tools Used 
The section lists the specific tools the consultants used to discover the finding. 

  

 

 
1 https://cwe.mitre.org/ 
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Likelihood and Impact 
IOActive assigns two ratings for each finding: one for likelihood and another for impact. 
Each rating corresponds to a numeric score ranging from 5 (critical) to 1 (informational). 

Table 3. Description of likelihood and impact 

Rating (Score) Likelihood Impact 

Critical (5) 

The finding is almost certain to be 
exploited; knowledge of the issue 
and how to exploit it are in the public 
domain 

Extreme impact to the entire 
organization if exploited 

High (4) 
The finding is relatively easy to 
detect and exploit by an attacker 
with low skills 

Major impact to the entire 
organization or a single line of 
business if exploited 

Medium (3) 
A knowledgeable insider or expert 
attacker could exploit the finding 
without much difficulty 

Noticeable impact to a line of 
business if exploited 

Low (2) 
Exploiting the finding would require 
considerable expertise and 
resources 

Minor damage if exploited or could 
be exploited in conjunction with other 
vulnerabilities as part of a more 
serious attack 

Informational (1) 

The finding is not likely to be 
exploited on its own but may be 
used to gain information for 
launching another attack 

Does not represent an immediate 
threat but may have security 
implications if combined with other 
vulnerabilities 

Total Risk Rating 
IOActive then calculates a total risk score by multiplying likelihood and impact.  

Table 4. Total risk rating and corresponding aggregate risk scores 

Total Risk Rating Total Risk Score Range 
(Likelihood ✕ Impact) 

Critical 20–25 

High 12–19 

Medium  6–11 

Low  2–5 

Informational  1 
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Effort to Fix 
IOActive estimates the effort it will take to fix the finding based on our consultants’ 
experience. An organization’s actual effort may vary based on factors such as skill sets, 
process efficiency, and available resources. 

CVSS 
IOActive may also use the Common Vulnerability Scoring System (CVSS)2 to capture the 
principal characteristics of a finding and produce a numerical score reflecting its severity. 
CVSS is used by organizations worldwide to supply a qualitative measure of severity; 
however, CVSS is not a measure of risk. 

IOActive assigns a value to each metric of the scoring system. 

Table 5. CVSS metrics and selectable values 

Metric List of Values 

Attack Vector (AV) 

Network (N) 
Adjacent (A) 
Local (L) 
Physical (P) 

Attack Complexity (AC) Low (L) 
High (H) 

Privileges Required (PR) 
None (N) 
Low (L) 
High (H) 

User Interaction (UI) None (N) 
Required (R) 

Scope (S) Unchanged (U) 
Changed (C) 

Confidentiality (C) 
None (N) 
Low (L) 
High (H) 

Integrity (I) 
None (N) 
Low (L) 
High (H) 

Availability (A) 
None (N) 
Low (L) 
High (H) 

 

 
2 https://www.first.org/cvss/ 
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These values translate to a base score3 and severity rating. 

Table 6. CVSS 3.1 base score and associated rating 

Severity Rating Base Score Range 

Informational 0.0 

Low 0.1 - 3.9 

Medium 4.0 - 6.9 

High 7.0 - 8.9 

Critical 9.0 - 10.0 

 

 

 
3 https://www.first.org/cvss/calculator/3.1 


