| _Active.

Researchisfueled Security Services

Signhing Transparency Service
Security Assessment

Microsoft Corporation

I0Active, Inc.
1426 Elliott Ave W
Seattle, WA 98119

Toll free: (866) 760-0222
Office: (206) 784-4313
Fax: (206) 784-4367

© 2025 10Active, Inc. All Rights Reserved.

Approved for public release by Microsoft and I0Active on 01-Oct-2025

Contents

EXECULIVE SUMMIBIY ...ttt ettt ettt a e e s bt e e e at e e e st e e e eabe e e aabeeeeneeeanbeeesnseeanseeeaneeeennes 1
o] [=Yox A TS T o 4 o] (o o SRR 2
KEY TAKEAWRAYSceiiiiutiiiie ettt e bttt e e e o s b e et e e e e bbbt e e e aa b et e e e e aabee e e e e aabbeeeeesanbeneeesanrneeeeaans 2
ANAIYSIS OF FINAINGS ..ottt et e et e e e bt e e s bee e e aeeesbeeeeaneeesneeaeanneeans 6
N L= A =T o 1SRRI 7

TECINICAl SUMMIBIY ... ettt ettt ettt e ettt e e bt e e e aa bt e e anteeeeneeeeemneeeambeeeeneeesnseeesneeeeneeas 8
D=y P11 [=To l T Lo 1 o o - TR PO P S OUP PRI 12

#ST-01 - [CCF] Incorrect Verification in verify_snp_attestation_report() [FIXED]ccccceecvvveeenneen. 12
#ST-05 - [CCF] Insufficient Checks for Third-party Dependenci€s...........cccceveiviiieeeiciiereeeccieee e, 14
#ST-04 - [QuickJS] Command INJECHIONeiiiiieiii et e e e e eneeas 16
#ST-03 - [ST] CCF Internal Configuration Disclosed via CCF Public APlcccccoeciiveiiicieee e, 19
Appendix A: Overview of Detailed FINAINGScooiiiiiiiiiiie e 24

Approved for public release by Microsoft and IOActive on 01-Oct-2025

Executive Summary

Microsoft Corporation (Microsoft) engaged I0Active, Inc. (IOActive) to assess the security
threats and risks associated with the Signing Transparency (ST) service, an open platform
built on the open-source Confidential Consortium Framework (CCF). The ST service is
intended to be implemented within Azure to allow third parties to validate the provenance of
the deployed software.

CCF uses trusted execution environments (TEEs) along with decentralized computing and
strong cryptography to allow the implementation of secure multi-party computing systems.
The ST service extends CCF to implement a ledger that can be used to provide provenance
for artefacts in digital supply chains—verifiable signed claims are stored in an unmodifiable
way within a ledger managed through the ST service. The ST service does this through a
web service API that allows verifiable claims to be submitted to and information about
specific claims to be retrieved from the underlying ledger. Claims are constructed and
verified as Concise Binary Object Representation (CBOR) Object Signing and Encryption
(COSE) requests. CBOR itself is essentially a restricted binary representation of a JSON
object.

The underlying ledger application runs on three separate nodes, as a Kubernetes workload
within Azure, with the ledger being managed in a distributed manner. The underlying
compute hardware is intended to be the trusted environment provided by the AMD SEV-
SNP platform.

Core system functionality, such as HTTP processing, deserialization, and cryptographic
operations, are implemented within CCF itself. Beyond that, several of the underlying
implementations are free and open-source software (FOSS), such as OpenSSL for
cryptography and QCBOR for CBOR processing.

The ST service requires specific operational security requirements, such as storage for the
ledger being write-once (so it cannot be modified), as well as specific requirements for
system bootstrap. The implementation and operation of the ST service is intended to meet
the following claims:

1. The ST service is transparent, attestable, and auditable.
2. The ST service ledger is immutable, tamper-proof, tamper-evident, and auditable.

3. The ST service provides non-repudiable and cryptographically verifiable receipts
that guarantee inclusion of data on the ledger.

4. The ST service ledger and policy engine are open-source and reproducible.
5. The ST service runs in a TEE, backed by confidential computing hardware.

6. The ST service enforces registration policies on relying parties before inclusion of
data hashes on the ledger.

Approved for public release by Microsoft and IOActive on 01-Oct-2025

N 1]

7. The ST service satisfies predefined registration policies associated with its code
upgrades, and the ST service TEE code is auditable.

8. Customers can query the ST service to view the production deployment history for
both the ST service and the relying parties.

9. All code upgrades to relying parties are transparent and always logged on the
immutable ledger.

Project Description

From the 28" of April to the 13" of June 2025, I0Active performed a code review, dynamic
testing, and targeted fuzzing of the ST service and underlying CCF. The primary security
concerns for the engagement were:

e The security of the implementation of the ST service
e The security of components used from and exposed by the usage of CCF

o Adherence to the security claims listed above

The source code for CCF was retrieved from the following URL on the 14™ of April 2025
(commit 363cd4b4965de54ad2102cfa84df052e95464192):

https://github.com/microsoft/CCF

The source code for the ST service was retrieved from the following URL on the 14™ of April
2025 (commit e4e7473fd3f7b732f608d2e74ec9c5de62d9602a):

https://github.com/microsoft/scitt-ccf-ledger

An environment was set up for dynamic testing within Azure at the following URL:

https://ioactive-dynamic-tests.confidential-ledger.azure.com/

Key Takeaways

IOActive found the security posture of the ST service and the underlying CCF to be robust.
Only four security findings were reported, three of which were only reported for
informational purposes.

The only finding with a security impact was a coding error that meant that attestation data
may not be validated correctly. This issue was verified as being remediated after a fix had
been implemented.

The first informational finding was a potential supply chain issue with libraries being used
for development without being cryptographically verified. The second informational issue is
related to the use of a third-party dependency by CCF that has a known command injection
vulnerability. However, a custom build of this dependency is used that is not affected by this
vulnerability, and the code is not compiled; and there are security controls in place that

Approved for public release by Microsoft and IOActive on 01-Oct-2025

\ °;‘[ﬂ

would prevent the vulnerable code from accidentally or deliberately being included in a
production build of CCF.

The final informational finding related to the architecture of the overall system and the
choice to implement the ST service API on top of the CCF APlIs. In principle, this exposes
the CCF APIs (notably the Public Node API used to manage the network of trusted
compute nodes, as well as the Governance API used to implement node consensus) along
with the ST service API. In principle, the use of the CCF APIs and the ST service API are
separate, whereby the Public Node API could be considered the underlying control plane,
for example, and should be used by separate users or user groups in separate use cases.
There is no need for a user with access to the ST service API to have access to the Public
Node API or Governance APIs.

Having said that, no security issues were identified in the CCF APIs and the information
they disclosed would only be of use to an attacker who had already compromised the
internal node network (i.e. of the containing Kubernetes workload if deployed through
Kubernetes). Since no direct security issues were identified, restricting or removing access
to APIs that do not need to be publicly exposed should be considered as a means of
reducing the attack surface; however, the cost of doing this should be balanced against the
potential impact. It should be noted that, due to the use of a shared underlying
implementation, functionality such as CBOR/COSE or HTTP processing will still be
available and will not be affected by any attack surface reduction measures.

The ID of a node could be returned in specific error messages from CCF through the ST
service; however, the node ID is a digest of the node’s public key, as such is considered
public, and so does not present a security risk and was not reported as such.

Regarding the security claims outlined above, since the implementation and architecture
were in scope, claims affected by these aspects of the system were validated. Claims that
rely on specific deployment or operational choices require validation based on an actual
production deployment and were not evaluated. IOActive made the following observations
regarding the claims:

1. The service is transparent, auditable, and attestable based on the analysis
performed. Specifically, the service relies on well-established cryptographic
principles.

2. The ST service ledger is immutable tamper-proof, tamper-evident, and auditable
based on access through the ST service API. Actual physical tamper-proofness or
tamper-evidence depends on the underlying hardware used to store the ledger,
which is intended to be storage that is essentially write-once.

3. The ST service uses the cryptographic functionality implemented within and
exposed through CCF to provide non-repudiable and cryptographically verifiable
receipts that guarantee inclusion of data on the ledger.

Approved for public release by Microsoft and IOActive on 01-Oct-2025

o

S @

4. The implementations of both the ST service and CCF are open source and were
audited as part of this assessment. The ST service itself can be verified within a
deployment as it is added to the ledger as part of the bootstrap process.

5. The underlying hardware was out of scope for this assessment and would need to
be verified per-deployment; however, the use of a TEE, such as AMD SEV-SNP,
provides the necessary secure environment to support the aims of the ST service.

6. The ST service requires user registration and relies on strong cryptographic
principles for request validation; however, user access must be set up as part of the
bootstrap process.

7. Registration policies are configurable for an ST service deployment, and TEE code
is auditable.

8. Deployment history is recorded in a non-modifiable manner in the underlying
ledger.

9. Code upgrades/modifications must be recorded in the ledger before they can be
executed.

As noted in the comments on the security claims and elsewhere within this report, aspects
of the system’s security and security claims are reliant on appropriate operational security
measures. This applies in particular to the underlying hardware and the bootstrap process.
These areas were out of scope for this assessment, but in terms of providing assurance to
third parties, it would be important to provide direct assurance regarding the underlying
system hardware actually used and that it meets the relevant requirements, as well as to
provide assurance about the bootstrap of a given deployment.

Since bootstrap will include the provision of system secrets, system users, and initial
system code, this inherently creates the root-of-trust for an ST service deployment without
necessarily relying on a root-of-trust—one of the fundamental aims of the bootstrap process
is to move from untrusted to trusted. Ideally, the initial bootstrap itself should be repeatable
and verifiable, allowing the bootstrapped state to be verified. Although of limited scope as
an attack, bootstrapping with a compromised TEE and compromised ST service could allow
malicious changes to be transparently made later. In essence, this is no different from
underlying cryptographic material being compromised, allowing an attacker to post
malicious updates to the ledger.

Consequently, aspects of the operational security of an ST service deployment should also
be made transparent to provide the maximum level of assurance possible. Equally, some
level of trust is necessary, as absolute assurance cannot reasonably be gained.

Notwithstanding these aspects of the system, IOActive validated the ST service security
claims where appropriate and no meaningful implementation or architectural security issues
were identified. As such, the ST service implements an appropriate solution as designed
and implemented for its intended use.

Approved for public release by Microsoft and I0Active on 01-Oct-2025 o [4]

IOActive would like to highlight the Temporal Logic of Actions (TLA+) formal specification
used to describe and model the consistency and consensus algorithms for CCF. This
specification provides a formal validation of these algorithms against attacks, such as race
conditions, that may impact the implementation of something like a distributed ledger. The
TLA+ modelling is openly available as part of the CCF open-source implementation.
Additionally, IOActive would like to highlight the threat model provided at the beginning of
the assessment, which suitably covered the potential threats that an ST service deployment
could face. Along with the implementation itself and discussions regarding hardware and
deployment, this indicates an appropriate level of concern and attention to the security of
the ST service, considering its intended use.

‘ Approved for public release by Microsoft and IOActive on 01-Oct-2025

S @

Analysis of Findings

Figure 1 shows the distribution of findings by risk rating.

4
3 3
3
2 . HInitial
i Remediated
1

1 —
0 0 0 0 0 0 0 0

Critical High Medium Low Informational

Figure 1. Distribution of Findings

IOActive identified one medium-risk vulnerability in Microsoft’s in-scope assets, as well as
three informational findings.

The medium-risk issue was a typographical error that means that attestation data is not
completely correctly validated by CCF and the use of third-party libraries without
verification. This issue has been verified as being fixed.

The informational findings were the ST service and CCF exposing information about the
deployment and a command injection vulnerability in the QuickJS engine. I0Active did not
identify a way to exploit these issues during the time allocated for the assessment.

‘ Approved for public release by Microsoft and 10Active on 01-Oct-2025 . [6]

Next Steps
IOActive recommends considering fixing the issues presented in this report to improve the
security posture of the in-scope assets. Once Microsoft has addressed the findings,
IOActive further recommends performing remediation validation testing to confirm that the
findings are properly fixed.

IOActive believes the most advantageous, efficient, and effective way to accomplish
remediation is to start by focusing on vulnerabilities that are high-risk and low effort to fix.
After these are fixed, the organization should focus on the remaining high-risk and more
complex vulnerabilities.

Table 1. Remediation status

Effort to | Status as of

Finding ID Title Total Risk Fix Report Date

[CCF] Incorrect Verification in
verify_snp_attestation_report()

[CCF] Insufficient Checks for Third-party

#ST-01 Medium Low Fixed

#ST-05 Informational | Low

Dependencies
#ST-04 [QuickdS] Command Injection Informational | Low
#ST-03 [ST] CCF Internal Configuration Disclosed Informational | Medium

via CCF Public API

Important The effort to address vulnerabilities is an estimate reflecting the
assessment team’s experience; actual remediation effort may vary based on
numerous factors including skill sets, process efficiency, and available resources.

‘ Approved for public release by Microsoft and IOActive on 01-Oct-2025

G T0
b ‘\‘ | p
Holod

S o

Technical Summary

Scope

The in-scope systems comprise the ST service, which implements a ledger that can be
used to provide provenance for artefacts in digital supply chains—verifiable signed claims
are stored in an unmodifiable way within a ledger managed through the ST service. The ST
service is intended to be used within Azure by the Azure Resource Manager (ARM) to
provide a level of assurance around the components built and used on top of a trusted
computing platform.

The underlying implementation has unified processing of HTTP requests that provides the
APls exposed from the ST service and CCF:

e The ST service API for querying and adding authenticated entries to the artefact
ledger

e CCF Public Node API for trusted compute node management
e CCF Governance API for management of consensus and node network constitution

These implementations are open source and intended to be publicly verifiable.

CCF provides the data serialization, ledger, and cryptographic functionality used by the ST
service, with low-level data processing functionality in turn being implemented using third-
party components such as OpenSSL and QCBOR.

The aim of the assessment was to look for potential vulnerabilities within the ST service and
the underlying CCF system that would impact the security of the ST service and its ability to
function as intended, particularly those that could be exploited to compromise the ST
service or CCF service and add unauthorized ledger entries or modify existing ledger
entries.

Project Approach

The consultants aimed to identify issues within the following broad areas based on the
specific abstractions split across the ST service/CCF system as a complete unit:

¢ Implementation, which includes hardware, language, and low-level platform features
where appropriate and addresses baseline platform security as well as code
correctness and data processing

e System logic, which includes the higher-level behavior of the system and addresses
behavior that is relevant from a cybersecurity perspective (e.g. authorization or
auditing)

e System architecture, which includes the definition and enforcement of security
contexts and the trust boundaries between them

Approved for public release by Microsoft and IOActive on 01-Oct-2025

S @

e System configuration, which can be the storage, use, or management of any
security-relevant configuration of hardware, first- or third-party code, or deployment
and management mechanisms

The broad, high-level, security-related areas of concern for a given system are as follows:

¢ Authentication/authorization
¢ Input/data/request validation
¢ Datal/information security (both data-at-rest and data-in-transit)
e System auditing
The assessment was divided into three phases:
o Initial project ramp-up
e Source code review
o Deployed instance dynamic assessment

The initial project ramp-up provided the consultants with the information necessary to
broadly understand the in-scope systems and code and was provided as an initial meeting
as well as access to internal documentation including the security claims as well as a threat
model.

The source code for the ST service and CCF was primarily C++ with some JavaScript for
CCF applications as well as Python for testing and scripting. Consequently, the primary
concern regarding implementation security was the correctness of data processing and
input validation. When auditing data-processing code, the aim is to determine edge cases
whereby the data processing implementation is not correctly defined for the input. This may
be due to a programming error or assumptions about the data received. For C++ code, the
implementation not being correctly defined typically leads to undefined behavior at the
programming-language level. Often the practical manifestation of undefined behavior is
memory corruption, which in turn may be exploitable for arbitrary code execution by
corrupting execution metadata (e.g. function or return pointers).

Input validation should involve checking any flags or enumerations have valid values,
including logically valid for their intended usage, as well as checking data sizes and array
access to ensure that only valid data is read and written. This is of particular importance for
data deserialization. The primary concerns related to input validation for the in-scope APIs
since state-altering requests are authenticated as signed messages containing data in a
binary format.

Regarding system logic, the primary concern is the correct logical behavior of security-
relevant functionality. Logic flaws are not language-specific and may relate to assumptions
about the sequence in which specific APIs may be called to enact a given operation or
about the state of a system when a specific operation is requested. The primary concern

Approved for public release by Microsoft and I0Active on 01-Oct-2025 19

from a logical perspective for the in-scope systems is the use of the functionality exposed
by the CCF APIs and whether this is appropriate for the use of the ST service.

Finally, regarding system architecture, the primary concern is the implementation of security
boundaries between different system components: the compartmentalization of functionality
based on user or component privileges. A rigorous security architecture will require a root-
of-trust that can then be used to establish identity for system components and system
users, from which the correct compartmentalization can be derived. The failure to
implement these boundaries, or the failure to implement them correctly, can lead to
significant and costly security flaws. The system uses and implements a strong definition of
identity, both user as well as software, based on strong cryptographic principles. As such,
any architectural concerns relate to the separation between the services exposed by the ST
service/CCF, as well as the establishment of the root-of-trust itself. The establishment of a
root-of-trust inherently touches on implementation details as well, such as underlying
hardware, and was beyond the scope of this assessment.

Bearing the above concepts and abstractions in mind, the source code was analyzed from
the primary perspective of the ST service, but reached into areas of the CCF codebase that
directly supported the ST service functionality to capture complete attack or data-
processing paths.

Regarding the correctness of the underlying CCF implementations for consensus and
consistency, which essentially implement the ledger, the consultants noted that formal
specifications were created using TLA+. IOActive did not independently verify either the
correctness of these specifications or that TLA+ itself validated these specifications;
however, the use of a formal language such as TLA+ is an excellent and commendable
way to demonstrate the robustness of the design of the consensus and consistency
algorithms, particularly regarding operational sequencing that may lead to race conditions
(which would be of concern for a multi-party ledger).

The dynamic assessment focused on manually confirming understanding of the ST service
deployed in an environment specifically set up for this security assessment. The API
endpoints were enumerated based on the source code, as well as by interrogating the API
itself (since endpoints can be registered to be discoverable through a dedicated query API).
Manual API testing used a combination of command line tools (e.g. cURL) and web
application testing software (e.g. Burp Suite). Manual testing focused on the logical
functionality implemented within the API, such as authentication and authorization of
requests (e.g. testing data signed by an untrusted authority), as well as well-known
malformed test cases for requests such as excessively large requests.

Processing of complex binary data was performed using a basic bit-flipping fuzzer. Given
the time constraints and the fact that the majority of binary data processing was performed
at the level of CBOR/COSE processing, the consultants judged simple manipulation of the
COSE message to be suitable for this purpose—the message must be deserialized, and
partly processed, correctly before it can be validated. The actual signed payload can be
arbitrary, so was not considered during the assessment.

Approved for public release by Microsoft and IOActive on 01-Oct-2025 _ [10]

The following Python implementation was used to generate 100,000 test cases, which were
sent to the ST service API at a rate that would not risk creating a denial-of-service (DoS)
attack. As noted above, the HTTP and CBOR/COSE processing is common to all the ST
service and CCF APIs, and so this testing is applicable to CCF as well as the ST service
even though the ST service AP| was not specifically targeted.

import sys;
import random;

def main () :
args = sys.argv[l:]

if len(args) != 2:
print ("Usage: python bitflip.py [infile] [tests]")
return

file = args|[0]
test int (args([1])

f = open(file, 'rb')

inbin = f.read()

binlen len (inbin)

outbin = bytearray(binlen)

for x in range (0, test):
outbin[:] = inbin

flips = random.randrange (1,5)

for flip in range(flips):
flipbyte = random.randrange (binlen)
flipbit = 1 << random.randrange (8)

outbin[flipbyte] = outbin[flipbyte] ~ flipbit

outfile = open (".\\out\\" + file + "-" + str(x), "wb")
outfile.write (outbin)
outfile.close ()

if name ==" main ":
main ()
The consultants also ran an instance of the Fuzzilli JS engine fuzzer on the QuickJS
engine. The intent was to identify any vulnerabilities that could be exploited through ballot

or policy scripts. No reproducible crashes were observed in the timeframe of the
assessment.

Finally, the CCF APIs were manually inspected to determine what functionality was
available as well as what information was retrievable, with a view to determining the
security impact on the ST service API itself.

Approved for public release by Microsoft and IOActive on 01-Oct-2025 R e K

Detailed Findings

#ST-01 - [CCF] Incorrect Verification in verify_snp_attestation_report() [FIXED]

Host(s) / File(s) CCF-main\src\js\extensions\snp_attestation.cpp

Category CWE-697: Incorrect Comparison

Testing Method White Box

Tools Used VS Code

Likelihood High (4)

Impact Low (2)

Total Risk Rating Medium (8)

Effort to Fix Low

CVSS 5.3 (Medium) - CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:N/I:H/A:N

Threat and Impact

std:

std:

The verify snp attestation report () function does not correctly verify all the attestation
data. The function uses data that is valid but in an unspecified state due to repeated calls to
std:move () on the same variable.

verify snp attestation report():186

auto attestation host data =

jsctx.new array buffer copy(attestation.host data);
JS _CHECK EXC (attestation host data);
JS CHECK SET (a.set ("host data",
:move (attestation host data)));

auto attestation id key digest =
jsctx.new array buffer copy(attestation.id key digest);
JS CHECK EXC (attestation id key digest);
JS _CHECK SET (a.set ("id key digest",
:move (attestation id key digest)));

auto attestation author key digest =

jsctx.new array buffer copy(attestation.author key digest);

JS _CHECK EXC (attestation author key digest);
JS_CHECK_SET (

Approved for public release by Microsoft and IOActive on 01-Oct-2025

N - 12]

1 Active.

a.set ("author key digest",
std::move (attestation id key digest)));

auto attestation report id =
jsctx.new array buffer copy(attestation.report id);
JS _CHECK EXC (attestation report id);
JS _CHECK SET (a.set ("report id",
std::move (attestation id key digest)));

auto attestation report id ma =
jsctx.new array buffer copy(attestation.report id ma);
JS CHECK EXC (attestation report id ma);
JS CHECK SET (a.set ("report id ma",
std::move (attestation report id ma)));

There is one correct attestation of attestation id key digest and acall to std: :move ()
followed by two further attestations that reuse attestation id key digest rather than the
variable that seems appropriate.

Additionally calling std: :move () leaves the argument in a valid but unspecified state, meaning that
the repeated attestations are using unspecified data, which could lead to unexpected behavior.

Recommendations

The issue appears to be a copy/paste issue where the repeated pattern has been copied, pasted, but
not appropriately corrected. The code should be modified to attest the appropriate data field for that
particular check in question; this will also prevent the use of unspecified data.

Additional Information

https://en.cppreference.com/w/cpp/utility/move

Approved for public release by Microsoft and IOActive on 01-Oct-2025 R £ F)

#ST-05 - [CCF] Insufficient Checks for Third-party Dependencies

Host(s) / File(s) tla/install_deps.py

Category CWE-325: Missing Cryptographic Step

Testing Method Manual

Tools Used Sublime

Likelihood Informational (1)

Impact Informational (1)

Total Risk Rating Informational (1)

Effort to Fix Low

CVSS 0.0 (Informational) - CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N

Threat and Impact

The CCF framework uses various third-party libraries and tooling. Some of the dependencies, like
LLVM for cross compilation, are cryptographically validated before being installed in a dev
environment.

The framework uses TLA+ (a formal specification language) as a dependency. TLA+ is downloaded as
a JAR file or compressed binaries without being cryptographically checked. An attacker who
compromises the TLA+ repositories or takes over the TLA domain would be able to get code execution
on systems running CCF.

The following code is from t1la/install deps.py:

def fetch latest(url: str, dest: str = "."):
subprocess.Popen (f"wget -N {url} -P /tmp".split()) .wait/()
file name = url.split("/") [-1]
file path = £"/tmp/{file name}"
assert os.path.exists(file path)
bin path = None

if file name.endswith (".bin"):
os.chmod(file path, os.stat(file path).st mode |
stat.S IEXEC)
subprocess.Popen (f"{file path} -d
{dest}".split()) .wait ()
bin path = f"{dest}/bin"

elif file name.endswith(".tgz"):
with tarfile.open (f"/tmp/{file name}") as tar:

Approved for public release by Microsoft and IOActive on 01-Oct-2025 4]

1 Active.

tar.extractall (dest)
rel bin path = next(
member.name for member in tar.getmembers () if
"bin" in member.name

)
bin path = os.path.join(dest, rel bin path)

elif file name.endswith(".jar"):
shutil.copyfile(file path, os.path.join (dest,
file name))

if bin path is not None:
append bashrc (f"export PATH:SPATH:{bin path}")

fetch latest(
url="https://nightly.tlapl.us/dist/tla2tools.jar",

dest=TLA DIR,

Recommendations

The use of TLA+ is provided as an example within the assessed codebase, is not used in the CCF/ST
service build process and is not deployed as part of a production system. As such, this issue is raised
for informational purposes.

 °; “5]

Approved for public release by Microsoft and IOActive on 01-Oct-2025

#ST-04 - [QuickJS] Command Injection

Host(s) / File(s) QuickJS

Category CWE-78: Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection’)

Testing Method Manual

Tools Used Manual

Likelihood Informational (1)

Impact Informational (1)

Total Risk Rating Informational (1)

Effort to Fix Low

CVsSS 0.0 (Informational) - CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N

Threat and Impact

The CCF framework uses QuickJS as the JavaScript engine to interpret ballot and policy scripts. Each
of the scripts would execute with separation provided by individual executions of the engine per script.
Information between scripts is shared using key-value pairs; however, the QuickJS engine has a
command injection vulnerability in the std.urlGet function. A URL that contains a command injection
payload will be executed as an OS command.

Additionally, an attacker could also use the std.popen function to execute OS commands. This would
breach the security boundary provided by the engine. This vulnerability is not applicable for CCF or the
ST service ledger as the QuickJS contexts within these applications do not allow the execution of std
functions. This was tested by the consultants.

The following was run on a regular QuickJS interpreter:

localhost:~# gjs
QuickdS - Type "\h" for help
gjs > std.urlGet (";touch /tmp/ioactive;")

sh: : Permission denied
null

qjs >

(Press Ctrl-C again to quit)
qjs >

localhost:~# 1ls /tmp/
ioactive

Approved for public release by Microsoft and IOActive on 01-Oct-2025

X 6]

I/ Active:

The consultants also verified that the std module cannot be accessed from within the policy scripts by
creating a policy script that attempted to access std.urlGet:

COSE_CLAIMS PATH="demo-poc/payload.sig.cose"
OUTPUT FOLDER="demo-poc" ./demo/cts poc/3-client-demo.sh

Setting up environment

Getting service parameters
% Total % Received % Xferd Average Speed Time
Time Current
Dload Upload Total Spent
Left Speed
100 776 100 776 0 0 42970 0 ==go=go= o=go=gs

=g==g== 43111

Submitting claim to the ledger and getting receipt for the
committed transaction
2025-06-13 14:05:54.288 | DEBUG |
pyscitt.client:request:402 - POST /entries 400 PolicyError
2025-06-13 14:05:54.288 | ERROR |
pyscitt.client:request:432 - Request failed: PolicyError Error
while applying policy: ReferenceError: 'std' is not defined

at apply (configured policy)

Traceback (most recent call last):
File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/venv/bin/scitt", line 8, in <module>
sys.exit (main ())

AN

File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/pyscitt/pyscitt/cli/main.py", line 47, in main
args.func (args)
File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/pyscitt/pyscitt/cli/register.py", line 61, in cmd
register signed statement (

client,
ANNANANANANANAN
...<2 lines>...
args.skip confirmation,

AAAAAAAAAAAAAAAAAAAAAAAN

)

A

File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/pyscitt/pyscitt/cli/register.py", line 34, in
register signed statement

submission =
client.submit signed statement and wait (signed statement)

File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/pyscitt/pyscitt/client.py", line 558, in
submit signed statement and wait

resp = self.post(
"/entries",
headers=headers,

Approved for public release by Microsoft and IOActive on 01-Oct-2025

,,l‘“7]

content=signed statement,

)
File "/home/<redacted>/projects/MS/cts/scitt-ccf-

ledger/pyscitt/pyscitt/client.py", line 462, in post
return self.request ("POST", *args, **kwargs)

AAAAAAAAAAAAAAAAAAAAAAAAN

File "/home/<redacted>/projects/MS/cts/scitt-ccf-
ledger/pyscitt/pyscitt/client.py", line 433, in request
raise response error
pyscitt.client.ServiceError: PolicyError: Error while applying
policy: ReferenceError: 'std' is not defined
at apply (configured policy)

Recommendations

The custom build of QuickJS used by CCF does not currently use this functionality - as such, this issue
is raised for informational purposes. Security controls are in place to ensure that this functionality
should not be re-enabled in a production build.

Approved for public release by Microsoft and IOActive on 01-Oct-2025

”*\‘UB]

#ST-03 - [ST] CCF Internal Configuration Disclosed via CCF Public API

Host(s) / File(s) CCF

Category CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
Testing Method Manual

Tools Used Burp Suite

Likelihood Informational (1)

Impact Informational (1)

Total Risk Rating Informational (1)

Effort to Fix Medium

CVsSS 0.0 (Informational) - CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N

Threat and Impact

The CCF provides two APIs for programmatic control and governance functionality of the nodes
compromising a confidential computing network: the CCF Public Node API and the CCF Governance
API. The ST service provides additional APl endpoints on top of the underlying framework that then
implement the specific secure ledger containing signed claims about digital artifacts to be executed on
a given compute node. The Public Node APl implements the control plane for nodes, with request
authentication implemented using signed requests, as well as multiple read-only endpoints that provide
information about the system. The CCF Governance APl implements the underlying system that allows
node behavior to be configured as well as nodes to submit proposals to the node network, with request
authentication also implemented using signed requests.

Both APIs provide a significant amount of information about a given the ST service deployment, the
majority of which may only be of use during system bootstrap. This includes information about the
Kubernetes deployment, as well as network configuration. This information itself does not currently
facilitate compromise of a deployment, and no security flaws were found within the ST service or CCF
API; consequently, this issue has been rated as informational.

For example, the following request was sent to the demo environment used during the assessment:

GET /node/network/nodes HTTP/1.1
Host: 134.33.167.10
Content-Length: 0O

The response to this request was as follows:
HTTP/1.1 200 OK

content-length: 2729
content-type: application/json

Approved for public release by Microsoft and IOActive on 01-Oct-2025

I/ Active:

x-ms—-ccf-transaction-id: 6.1280

"nodes": [
{
"last written": 660,
"node data": {

"containerImage":
"confidentialledgeracrprod.azurecr.io/scitt-
snp:0.14.0 1.0.030401-e£fd79al5",

"kubernetesNamespace": "00000000-0000-0000-0000-
c90288598eec",

"ledgerName": "ioactive-dynamic-tests",

"nodeName": "accledger-0",

"vmName": "vn2-zone-3-virtualnode-0"

b

"node id":
"8c25fc51bbaa97d63e23a005dd31f216bb2fed0e7bdb615262ecldob3faz4
Tel",

"primary": true,

"rpc_interfaces": {

"node": {

"bind address": "0.0.0.0:16386",
"endorsement": {
"authority": "Node"
b
"published address": "10.2.0.7:16386"
b
"operator": {
"bind address": "0.0.0.0:16387",
"endorsement": {
"authority": "Service"
b
"published address": "10.2.0.7:16387"
b
"primary": {
"bind address": "0.0.0.0:16385",
"endorsement": {
"authority": "Service"
b
"http configuration": {
"max body size": "1MB"
b
"published address": "10.2.0.7:16385"
}
b
"status": "Trusted"

}y
{

"last written": 25,
"node data": {

"containerImage":
"sha256:08670dc8b7€a1520381d5742¢c7b21c78deeb095de0d85db368e4£0
b0357fb576",

"containerImageId":
"confidentialledgeracrstaging.azurecr.io/scitt-

Approved for public release by Microsoft and IOActive on 01-Oct-2025

N [20]

I/ Active:

snp@sha256:c6al119e92e381a9%94c058c96e5adb080968bb4dblfc4944dbdab
3¢c7389f£15804c",
"kubernetesNamespace": "00000000-0000-0000-0000-
c90288598eec",
"ledgerName": "ioactive-dynamic-tests",
"nodeName": "accledger-2",
"vmName": "vn2-virtualnode-0"
br
"node id":
"6e90ee3e86dceaaec014223fa2ad464df50eb2a49%eebcdb13e7efc3b3b7dd6
84b",
"primary": false,
"rpc_interfaces": {
"node": {
"bind address": "0.0.0.0:16386",
"endorsement": {
"authority": "Node"
br
"published address": "10.2.0.14:16386"
br
"operator": {
"bind address": "0.0.0.0:16387",
"endorsement": {
"authority": "Service"
br
"published address": "10.2.0.14:16387"
br
"primary": {
"bind address": "0.0.0.0:16385",
"endorsement": {
"authority": "Service"
br
"http configuration": {
"max body size": "1MB"
br
"published address": "10.2.0.14:16385"
}
br
"status": "Trusted"

}y
{

"last written": 675,
"node data": {

"containerImage":
"sha256:08670dc8b7€a1520381d5742¢c7b21c78deeb095de0d85db368e4£0
b0357fb576",

"containerImageId":
"confidentialledgeracrstaging.azurecr.io/scitt-
snp@sha256:c6al119e92e381a9%94c058c96e5adb080968bb4dblfc4944dbdab
3c7389£15804c",

"kubernetesNamespace": "00000000-0000-0000-0000-
c90288598eec",

"ledgerName": "ioactive-dynamic-tests",

"nodeName": "accledger-1",

"vmName": "vn2-zone-2-virtualnode-0"

}y

Approved for public release by Microsoft and IOActive on 01-Oct-2025

"node id":
"913b99df07bffbc58ae8acbcbd9e868a09861437920a94db95675e925ee52

62a",
"primary": false,
"rpc_interfaces": {
"node": {
"bind address": "0.0.0.0:16386",
"endorsement": {
"authority": "Node"
br
"published address": "10.2.0.19:16386"
br
"operator": {
"bind address": "0.0.0.0:16387",
"endorsement": {
"authority": "Service"
br
"published address": "10.2.0.19:16387"
br
"primary": {
"bind address": "0.0.0.0:16385",
"endorsement": {
"authority": "Service"

}y

"http configuration": {

"max body size": "1MB"
}y
"published address": "10.2.0.19:16385"
}
}y
"status": "Trusted"

}

A limited amount of information has been highlighted, but as can be seen, details such as Kubernetes
namespace, internal IP addresses and ports, as well as VM information, are provided.

Recommendations

Although the assessment of the ST service and CCF APIs did not discover any direct security
weaknesses, and the information provided does not weaken the security of the system as it is, reducing
the amount of information provided to arbitrary third-parties as well as restricting access to these APIs
in order to reduce the available attack surface means that restricting access to the Node and
Governance APIs (where practical) may be beneficial from a security perspective.

As is often the case, there is a partial conflict between security and usability. APIs should only be
restricted where it has no practical impact on the use of an ST service deployment. Additionally, since
the system is intended to provide a verifiable way of assessing the provenance of systems deployed on
top of the ST service within Azure, it may be desirable to keep all APIs open and accessible for the
sake of transparency

Finally, it is worth highlighting that in terms of attack surface reduction, this will only impact higher-level
logical functionality within the Node and Governance endpoints; functionality such as COSE

Approved for public release by Microsoft and IOActive on 01-Oct-2025

N 122

processing, CBOR processing, and low-level HTTP-processing is shared between all APIs and as such
will still be exposed through the ST service API endpoints.

Approved for public release by Microsoft and IOActive on 01-Oct-2025

[23]

Appendix A: Overview of Detailed Findings

Host(s) / File(s)

This section includes a list of the assets affected by the finding.

Category

IOActive uses Common Weakness Enumeration (CWE ™)' identifiers to categorize each
finding. CWE is a community-developed list of software and hardware weakness types that
have security ramifications. This software assurance strategic initiative is sponsored by the
National Cyber Security Division of the U.S. Department of Homeland Security and
published by The MITRE Corporation.

Testing Method

The testing method captures the approach that the consultants used to discover the finding.

Table 2. Examples of testing methods

Method

Description

Black Box

The consultants had no internal knowledge of the target and were not
provided with any information that was not publicly available.

Grey Box

The consultants had access and knowledge levels comparable to a
user, potentially with elevated privileges. The consultants may also
have been provided documentation, accounts, or other information.

White Box

The consultants had full access to the target’s source code,
documentation, etc.

Tools Used

The section lists the specific tools the consultants used to discover the finding.

! https://cwe.mitre.org/

Approved for public release by Microsoft and IOActive on 01-Oct-2025 . [24]

Likelihood and Impact
IOActive assigns two ratings for each finding: one for likelihood and another for impact.
Each rating corresponds to a numeric score ranging from 5 (critical) to 1 (informational).

Table 3. Description of likelihood and impact

Rating (Score)

Likelihood

Impact

The finding is almost certain to be
exploited; knowledge of the issue

Extreme impact to the entire

Critical (5) and how to exploit it are in the public | organization if exploited
domain
The finding is relatively easy to Major impact to the entire
High (4) detect and exploit by an attacker organization or a single line of
with low skills business if exploited
. A knowledgeable |n§|der or e>.(pert Noticeable impact to a line of
Medium (3) attacker could exploit the finding .) X
. e business if exploited
without much difficulty
Exploiting the finding would require Minor da_mag_e i ex_plom_ad or .COUId
; ; be exploited in conjunction with other
Low (2) considerable expertise and

resources

vulnerabilities as part of a more
serious attack

Informational (1)

The finding is not likely to be
exploited on its own but may be
used to gain information for
launching another attack

Does not represent an immediate
threat but may have security
implications if combined with other
vulnerabilities

Total Risk Rating

IOActive then calculates a total risk score by multiplying likelihood and impact.

Table 4. Total risk rating and corresponding aggregate risk scores

Total Risk Rating

Total Risk Score Range
(Likelihood X Impact)

High 12-19
Medium 6-11
Low 2-5
Informational 1

Approved for public release by Microsoft and IOActive on 01-Oct-2025

Effort to Fix
IOActive estimates the effort it will take to fix the finding based on our consultants’
experience. An organization’s actual effort may vary based on factors such as skill sets,
process efficiency, and available resources.

CVSS
IOActive may also use the Common Vulnerability Scoring System (CVSS)? to capture the
principal characteristics of a finding and produce a numerical score reflecting its severity.
CVSS is used by organizations worldwide to supply a qualitative measure of severity;
however, CVSS is not a measure of risk.

IOActive assigns a value to each metric of the scoring system.

Table 5. CVSS metrics and selectable values

Metric List of Values

Network (N)
Adjacent (A)
Local (L)

Physical (P)

Attack Vector (AV)

Low (L)

Attack Complexity (AC) High (H)

None (N)
Privileges Required (PR) Low (L)
High (H)

None (N)

User Interaction (Ul) Required (R)

Unchanged (U)

Scope (S) Changed (C)

None (N)
Confidentiality (C) Low (L)
High (H)

None (N)
Integrity (1) Low (L)
High (H)

None (N)
Availability (A) Low (L)
High (H)

2 https://www.first.org/cvss/

‘ Approved for public release by Microsoft and IOActive on 01-Oct-2025 _ [286]

These values translate to a base score® and severity rating.

Table 6. CVSS 3.1 base score and associated rating

Severity Rating Base Score Range
Informational 0.0

Low 0.1-3.9

Medium 40-6.9

High 7.0-8.9

Critical 9.0-10.0

3 https://www.first.org/cvss/calculator/3.1

Approved for public release by Microsoft and IOActive on 01-Oct-2025

