
IOActive, Inc. Copyright ©2014. All Rights Reserved.

“Why, sometimes I've believed as many
 as six impossible things before breakfast.”
 ― Lewis Carroll, Alice in Wonderland

Miniaturization

Jason Larsen
Blackhat 2014

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Who Am I?

•  Jason Larsen
•  CyberSecurity Researcher specializing in critical

infrastructure

IOActive, Inc. Copyright ©2014. All Rights Reserved.

A play presentation in two parts

•  I submitted two talks to Black Hat and ….. they
said to do both of them at the same time

•  Creating a kick@#$$ SCADA attack firmware
modification in two acts
–  Act I : Making the attack code really small
–  Act II : Efficiently inserting the rootkit into the

firmware
•  Popcorn Warning

Lots of algorithms and assembly code ahead

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Could You Hide an Entire Attack in a
Pressure Meter?
•  Small microcontroller

•  Kilobytes of memory (total)
•  Very little CPU power
•  Kilobytes of flash (total)

Eleven Years Ago
(And yes, it was lame even then)

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Record and Playback

•  The operator’s screens didn’t update in this video
•  It was created using the trusty record-and-playback

method
•  What if we want to go small?
•  What if we want to go really small?
•  What if we want to go down into the sensors?

The Scenario

Water Flow

Shock Wave

Valve
Physical Movement

Reflected Shock Wave

Valve Closes
Shockwave Reflected Wave

The Scenario

•  The shockwave travels at the speed
of sound in water

•  Or, if pipe is elastic
•  The optimal interval to cycle the

valve
–  X is the time between valve closing
–  Y is the time between the pressure wave

and the rarefaction wave

t = L / A

E = Ewater *Tpipe*Epipe
Tpipe*Epipe+Dpipe*Ewater

2X +Y
4

*Fluid Dynamics. Professional Publications Inc.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Supersampling

*Mechanical Vibration and Shock Measurements

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Act I – Making the Attack Code Really Small

Popcorn Alert! Lots of assembly ahead

IOActive, Inc. Copyright ©2014. All Rights Reserved.

•  Miniaturizing the Attack Code
–  Spoofing with Runs Analysis
–  Triangles for Filtering Noise
–  Scale-free matching for Watching the Process

•  Inserting the Attack Code into the Firmware
–  MicroOps
–  Binary Normal Form
–  Abusing Needleman Wuncsh to Merge Firmware
–  Metasploit for Firmware

•  Demos

Miniaturizing Firmware Attack Code

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Sensor Noise
(This isn’t going to fool anyone)

Anyone looking at this will think “dead sensor”
The forensics team will zoom on this immediately

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Sensor Noise

•  Humans are really good at spotting differences in
“randomness”

•  Even on graphical displays, operators get used to the
“jiggle” in the visualization

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Sensor Noise
A Random Walk

•  Just adding randomness
–  It’s easy for a human to spot where

the spoof starts
–  This doesn’t preserve the

“spikiness”, “width”, and “gaps” of
the original

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Sensor Noise

•  If you’re a math major, you’re probably shouting “Yeah!
FFT!”

Total Flash Your Favorite FFT Library

This won’t fit

Scaling and Shifting

Scaling can increase
magnitude of the noise

These are solvable problems but they grow bigger as you try to get it right

Shifting requires an averaging function
to eliminate stair steps during
adjustments

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Runs Analysis

•  Most of these techniques require that the attacker have
access to previously recorded data to get the algorithm right.
–  What if we don’t get to see the sensor noise before we start?

•  Runs analysis can spoof the sensor noise with no
preknowledge of the data.

•  Sensor noise can be treated as a random walk
•  Random walks can be characterized through an analysis of

the length and frequency of runs

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Runs Analysis

•  During a learning phase, count the runs

390.3
390.4
390.6
390.3
390.5
390.9
391.1
391.2
390.9
390.9
390.8

+3 increasing (moved 0.3)
-1 decreasing (moved -0.3)
+3 increasing (moved 0.6)

As expected this gives a nice normal
distribution

-1 decreasing (moved -0.8)

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Runs Analysis

•  Taking the average movement of a runs bucket turns into a
slope and a length

+5 -1

Chaining line segments together
reproduces the noise

+4 +3 -2

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Runs Analysis

•  The playback algorithm is really simple
–  Add up all the positive/negative buckets
–  Choose a random number 0<x<sum(buckets)
–  Move by average bucket value for bucket samples
–  If desired is above current, choose from positive buckets

otherwise choose from negative buckets

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Runs Analysis

We get nice, believable sensor noise with no prior knowledge of the system

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Runs Analysis

•  We have to fit this on the microcontroller. How big is
the code+data?
–  Just over 400 bytes depending on linker constraints
–  ARM, X86, and PPC are similar in size

•  We can definitely fit that inside a pressure sensor

IOActive, Inc. Copyright ©2014. All Rights Reserved.

•  Miniaturizing the Attack Code
–  Spoofing with Runs Analysis
–  Triangles for filtering noise
–  Scale-free Matching for Watching the Process

•  Inserting the Attack Code into the Firmware
–  MicroOps
–  Binary Normal Form
–  Abusing Needleman Wuncsh to Merge Firmware
–  Metasploit for Firmware

•  Demos

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Leveling

•  We’re going to be attacking the process and making
changes

•  We need to preserver the small changes that are
expected so the forensics guys can match them up
later

•  We need to remove the big changes so the logs don’t
show what we’ve been doing

Leveling

We need to transfer this artifact

But not this trend

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Leveling

•  How big is an artifact?
•  How big is a disturbance?
•  Do I need a different algorithm for every type of signal?
•  What if I don’t get to see the signal beforehand to

choose my algorithm?

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Leveling
Moving Averages

•  Everyone starts with a moving average to filter out the
data from the noise
–  This might not be the best approach

•  Even simple algorithms can be large when the size of
the data is taken into account

Moving Average 2 point

4 Bytes to store the data

Where is the peak?
Will this detect 50 peaks?

Moving Average 50 point

200 Bytes to store the data

These will still get in the way

Moving Average 200 point

800 Bytes to store the data
Peaks are detected 100 samples late

Looking good, but at what cost?

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Beyond Moving Averages
Fitting Curves to the Data

•  A moving average is an example of a scale-dependent
algorithm

•  How many points should be applied to smooth out the
curve?
–  It’s impossible to know without an example of the data

•  LOTS of code is needed to deal with scaling factors
–  Mm/Hg, cm/h20, Pascals?
–  More than all the rest of the attack code combined

Beyond Moving Averages
Scaling and Leveling Algorithms

Forget sine waves. Your trig library
isn’t going to fit either

Don’t forget all those nasty sensor glitches

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Triangles

•  Triangles are a good-enough approximation of the
process data

•  We just need a very small algorithm to fit triangles onto
the process data

•  How big is the optimal triangle?
–  The largest features are the ones you care about
–  We need an algorithm that will produce triangles that is

scale independent
–  The triangles should all cover a similar area

Triangles

Think of the process data as a set
of triangles. Triangles are cheap
and easy

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Triangles

•  We can make some assumptions about the data
–  The process is not running out of control therefore, it will

oscillate as the feedback mechanisms control the process
–  Artifacts smaller than the noise are too small to affect the

process
–  There isn’t significant hysteresis in the system

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Triangles
(Still tweaking this one)

1.  A simple algorithm
2.  Declare a vertex at the first value
3.  Choose an arbitrary starting window n. Calculate or estimate a smoothing

factor s=log(n).
4.  Note the minimum and the maximum values in the window.
5.  Draw a triangle from the origin through the minimum and maximum values and

ending in a vertical line at n.
6.  Declare a vertex at the midpoint of the vertical line at n.
7.  Start drawing a second triangle from the vertex using the slopes of the previous

triangle.
8.  Count y,z samples that are above/below the triangle.
9.  When y or z > s, declare a vertex at the midpoint of the vertical line through the

current sample
10.  If y<z, increase the slope of the top and decrease the slope of the bottom line

otherwise do the opposite
11.  If the number of samples between the current sample and the last vertex < 4n.

then increase n
12.  If at any time there has been no vertex in 4n samples, declare a vertex at the

midpoint of the line through the current sample and decrease n.
13.  Go to step 6

Triangles

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Transferring Artifacts

•  Now that the triangles are complete
–  Declare that the midpoint of each line segment should be

scaled to the spoof value
–  The difference from the line segment to the observed

data is averaged into the spoof data

Scaling and Leveling

IOActive, Inc. Copyright ©2014. All Rights Reserved.

•  Miniaturizing the Attack Code
–  Spoofing with Runs Analysis
–  Triangles for Filtering Noise
–  Scale-free Matching for Watching the Process

•  Inserting the Attack Code into the Firmware
–  MicroOps
–  Binary Normal Form
–  Abusing Needleman Wuncsh to Merge Firmware
–  Metasploit for Firmware

•  Demos

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Artifact Extraction

•  We need to spot the pressure wave and the reflected
wave

•  We can extract the state of the process using the
triangles

•  This saves CPU time because we’re only running this
logic when we declare a new vertex

Artifact Extraction

Something happened
-Slopes changed
-Lengths changed

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Artifact Extraction

•  For our attack model we only need two artifacts
–  When did the pressure wave hit?
–  When did the reflected wave hit?

2X +Y
4

Scale Free Description

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.05 0.1 0.15 0.2 0.25

P1_pressure

-­‐60	

-­‐50	

-­‐40	

-­‐30	

-­‐20	

-­‐10	

0	

10	

20	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	
 1.1	
 1.2	
 1.3	
 1.4	
 1.5	
 1.6	

Modeling says it should look like this

It actually looks like this

We need to cycle the valve at:
X=(0.55-0.4)
Y=(0.65-0.55)
2X+Y=0.4 seconds

IOActive, Inc. Copyright ©2014. All Rights Reserved.

-­‐60	

-­‐50	

-­‐40	

-­‐30	

-­‐20	

-­‐10	

0	

10	

20	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1	
 1.1	
 1.2	
 1.3	
 1.4	
 1.5	
 1.6	

Line Segments

Triangle Strips

Ratio of areas between adjacent triangles
(I could have also used ratios of the angles)

Scale Free Description-
Ratio of areas of adjacent
triangles

.31-.33
.29-.33
.21-.29

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Triangles

•  How big is the triangle algorithm? We have to fit it into
a pressure sensor, after all.
–  Approx 700 bytes (Ouch!)

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Total Size

•  Sensor Noise ~ 400 bytes
•  Triangles ~ 700 bytes
•  DNP CRC – 272 bytes (ouch!)
•  Protocol and Glue Logic ~ 600 bytes

•  Total Payload – 2174 bytes
–  That’s about 0.7% of the total flash

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Act II – Inserting the Code into the Firmware

Popcorn Alert! Lots of assembly ahead

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Inserting the Rootkit into the Firmware

•  I still need to make my payload smaller
–  To make it smaller, I need to reuse the existing code.

•  Debugging
–  If I’m reusing existing code, how do I debug it?
–  What if the existing code has side effects?

•  Portability
–  I don’t want to recode my rootkit for every single sensor

I want to invade.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Parallel Construction

•  I’m going to write and debug my attack code on my
MacBook (X86), debug it, and then deploy it on an
pressure sensor (MSP430).

•  I need to be able to translate between those two
different architectures.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Example Code

int CalcSomething(int x){
 int total = 0;
 int i;
 for (i=0;i<x;i++){
 total=total+i;
 }
 return total;

}

IOActive, Inc. Copyright ©2014. All Rights Reserved.

MSP430 Assembly

IOActive, Inc. Copyright ©2014. All Rights Reserved.

ARM Assembly

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Are they different?

•  We can’t directly compare the two assemblies

VS

IOActive, Inc. Copyright ©2014. All Rights Reserved.

STR R11, [SP,#-4+var_s0]!
ADD R11, SP, #0
SUB SP, SP, #0x14
STR R0, [R11,#var_10]
MOV R3, #0
STR R3, [R11,#var_8]
MOV R3, #0
STR R3, [R11,#var_C]
B loc_40
LDR R2, [R11,#var_8]
LDR R3, [R11,#var_C]
ADD R3, R2, R3
STR R3, [R11,#var_8]
LDR R3, [R11,#var_C]
ADD R3, R3, #1
STR R3, [R11,#var_C]
LDR R2, [R11,#var_C]
LDR R3, [R11,#var_10]
CMP R2, R3
LDR R3, [R11,#var_8]
MOV R0, R3
SUB SP, R11, #0
LDR R11, [SP+var_s0],#4
BX LR

Preamble

Stack Allocation
Argument Linking

Local Variable Initialization

Actual Logic

Argument Linking

Postamble

push.w R4
mov.w SP, R4
incd.w R4
add.w #0FFFAh, SP
mov.w R15, 0FFFCh(R4)
clr.w 0FFF8h(R4)
clr.w 0FFFAh(R4)
jmp loc_22
add.w 0FFFAh(R4), 0FFF8h(R4)
inc.w 0FFFAh(R4)
cmp.w 0FFFCh(R4), 0FFFAh(R4)
jl loc_18
mov.w 0FFF8h(R4), R15
add.w #6, SP
pop R4
ret

IOActive, Inc. Copyright ©2014. All Rights Reserved.

•  Miniaturizing the Attack Code
–  Spoofing with Runs Analysis
–  Triangles for Filtering Noise
–  Scale-free Matching for Watching the Process

•  Inserting the Attack Code into the Firmware
–  MicroOps
–  Binary Normal Form
–  Abusing Needleman Wuncsh to Merge Firmware
–  Metasploit for Firmware

•  Demos

PUSH EAX

ESP:=ESP-4 [ESP]:=EAX

IOActive, Inc. Copyright ©2014. All Rights Reserved.

MicroOps

•  Assembly language operations are actually complex
–  They can be described using several smaller operations

•  Push EAX is actually complex instruction with two
operations
–  Subtract 4 from the stack pointer
–  Move EAX into the memory pointed to by the stack

pointer

ESP:=ESP-4
[ESP]:=EAX PUSH EAX

IOActive, Inc. Copyright ©2014. All Rights Reserved.

MOV	
 	
 	
 	
 	
 R3,	
 #0	

STR	
 	
 	
 	
 	
 R3,	
 [R11,#var_8]	

MOV	
 	
 	
 	
 	
 R3,	
 #0	

STR	
 	
 	
 	
 	
 R3,	
 [R11,#var_C]	

B	
 	
 	
 	
 	
 	
 	
 loc_40	

LDR	
 	
 	
 	
 	
 R2,	
 [R11,#var_8]	
 	
 	
 	
 	

LDR	
 	
 	
 	
 	
 R3,	
 [R11,#var_C]	

ADD	
 	
 	
 	
 	
 R3,	
 R2,	
 R3	
 	

STR	
 	
 	
 	
 	
 R3,	
 [R11,#var_8]	
 	

LDR	
 	
 	
 	
 	
 R3,	
 [R11,#var_C]	
 	

ADD	
 	
 	
 	
 	
 R3,	
 R3,	
 #1	

STR	
 	
 	
 	
 	
 R3,	
 [R11,#var_C]	

LDR	
 	
 	
 	
 	
 R2,	
 [R11,#var_C]	

LDR	
 	
 	
 	
 	
 R3,	
 [R11,#var_10]	

CMP	
 	
 	
 	
 	
 R2,	
 R3	

BLT	
 	
 	
 	
 	
 loc_24	

[R4+8]:=0	

[R4+10]:=0	

PC:=loc_22	

[R4+8]:=[R4+10]+[R4+8]	

[R4+10]:=[R4+10]+1	

IF	
 [R4+10]<[R4+8]	
 THEN	

PC:=loc_18	

R3:=0	

[R11+8]:=R3	

R3:=0	

[R11+C]:=R3	

PC:=loc_40	

R3:=[R11+8]	

R3:=[R11+C]	

R3:=R2+R3	

[R11+8:]:=R3	

R3:=R11+C]	

R3:=R3+1	

[R11+C]:=R3	

R2:=[R11+C]	

R3:=[R11+10]	

IF	
 	
 	
 	
 R2<	
 R3	
 THEN	
 PC:=loc_24	

clr.w	
 	
 	
 0FFF8h(R4)	

clr.w	
 	
 	
 0FFFAh(R4)	

jmp	
 	
 	
 	
 	
 loc_22	

add.w	
 	
 	
 0FFFAh(R4),	
 0FFF8h(R4)	

inc.w	
 	
 	
 0FFFAh(R4)	

cmp.w	
 	
 	
 0FFFCh(R4),	
 0FFFAh(R4)	
 	

jl	
 	
 	
 	
 	
 	
 loc_18	

Let’s break these two
down into MicroOps

Apples->Pears
Oranges->Pears

Now They are the
same language!

But….Not exactly the
same yet

IOActive, Inc. Copyright ©2014. All Rights Reserved.

•  Miniaturizing the Attack Code
–  Spoofing with Runs Analysis
–  Triangles for Filtering Noise
–  Scale-free Matching for Watching the Process

•  Inserting the Attack Code into the Firmware
–  MicroOps
–  Binary Normal Form
–  Abusing Needleman Wuncsh to Merge Firmware
–  Metasploit for Firmware

•  Demos

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Binary Normal Form (BNF)

•  What we need is a set of rules. Tame the chaos.
•  I call this set of rules Binary Normal Form
•  We apply all the rules, we have a good chance of

converting the structure of the two MicroOp trees into
the same tree.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Binary Normal Form

1.  All loads and stores are via a register.
2.  All branches are positive form “Jump if Equal” instead

of “Jump if not Equal”.
3.  The true branch always comes first (Jump to false).
4.  ……

IOActive, Inc. Copyright ©2014. All Rights Reserved.

TMP1:=0
[R4+8]:=TMP1
[R4+10]:=TMP1
PC:=loc_22
TMP1:=[R4+8]
TMP2:=[R4+10]
TMP3:=TMP1+TMP2
[R4+8]:=TMP3
TMP1:=[R4+10]
TMP1:=TMP1+1
[R4+10]:=TMP1
TMP1:=[R4+8]
TMP2:=[R4+10]
IF TMP1<TMP2 THEN PC:=loc_18

R3:=0
[R11+8]:=R3
[R11+C]:=R3
PC:=loc_40
R3:=[R11+8]
R2:=[R11+C]
R3:=R2+R3
[R11+8:]:=R3
R3:=[R11+C]
R3:=R3+1
[R11+C]:=R3
R2:=[R11+C]
R3:=[R11+10]
IF R2< R3 THEN PC:=loc_24

Binary Normal Form

Excellent! They kinda match!!

It’s not an exact match.
They use different registers
and different stack offsets.
Compilers may have
ordered things differently.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Infinite Register File

•  What can we do to normalize the registers and stack
variables?

•  It would be a shame we couldn’t compare two chunks
of code simply because the compiler chose a different
register.

•  If there were an infinite number of registers, a compiler
would never need to reuse them.
–  There would also be no need for stack variables.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Infinite Register File

STR R11, [SP,#-4+var_s0]!
ADD R11, SP, #0
SUB SP, SP, #0x14
STR R0, [R11,#var_10]
MOV R3, #0
STR R3, [R11,#var_8]
MOV R3, #0
STR R3, [R11,#var_C]
B loc_40
LDR R2, [R11,#var_8]
LDR R3, [R11,#var_C]
ADD R3, R2, R3

Allocate 5 Registers

Allocate 1 Register for the new base pointer

Becomes move stack into base

Becomes move zero into a register

IOActive, Inc. Copyright ©2014. All Rights Reserved.

S1:=0
S2:=0
PC:=PC+2
S1:=S1+S2
S2:=S2+1
IF S2<ARG1 THEN PC:=PC-2

S1:=0
S2:=0
PC:=PC+2
S1:=S1+S2
S2:=S2+1
IF S2< ARG1 THEN PC:=PC-2

Infinite Register File

•  Nasty stack operations are eliminated
•  The two code segments match!
•  We can say that they are the same logic (minus the register

width).

IOActive, Inc. Copyright ©2014. All Rights Reserved.

•  Miniaturizing the Attack Code
–  Spoofing with Runs Analysis
–  Triangles for Filtering Noise
–  Scale-free Matching for Watching the Process

•  Inserting the Attack Code into the Firmware
–  MicroOps
–  Binary Normal Form
–  Abusing Needleman Wuncsh to Merge Firmware
–  Metasploit for Firmware

•  Demos

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Modified Code

int CalcSomething(int x){
 int total = 0;
 int i;

 for (i=0;i<x;i++){
 total=total+i;
 }
 return total;

}

int EvilSomething(int x){
 int total = 0;
 int i;

 for (i=0;i<x;i++){
 total=total+i+4;
 }
 return total;

}

What if I made some changes?

IOActive, Inc. Copyright ©2014. All Rights Reserved.

S1:=0
S2:=0
PC:=PC+3
S3:=S2+4
S1:=S1+S3
S2:=S2+1
IF S2<ARG1 THEN PC:=PC-3

S1:=0
S2:=0
PC:=PC+2
S1:=S1+S2
S2:=S2+1
IF S2< ARG1 THEN PC:=PC-2

Edit Distance

•  How close are these two functions?
•  One way to measure that is the edit distance

•  How many IF statements would it take to make them the
same?

IOActive, Inc. Copyright ©2014. All Rights Reserved.

S1:=0
S2:=0
PC:=PC+3
S3:=S2+4
S1:=S1+S3
S2:=S2+1
IF S2<ARG1 THEN PC:=PC-3

S1:=0
S2:=0
PC:=loc_40
S1:=S1+S2
S2:=S2+1
IF S2< ARG1 THEN PC:=loc_24

Edit Distance

S1:=0
S2:=0
PC:=PC+6
IF ARG2 THEN
 S1:=S1+S2
ELSE
 S3:=S2+4
 S1:=S1+S3
S2:=S2+1
IF S2< ARG1 THEN PC:=PC-6

These two functions differ with
an edit distance of 1

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Edit Distance

•  That was a trivial example
•  How can we find the edit distance between two pieces

of code in a more generic way?
•  We can steal from the biologists and use protein

matching algorithms
–  Needleman-Wunsch can be used to find the edit distance

between two strings
•  We can adapt that for our uses

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Needleman Wunsch

Inserting Code is Fun
Inserting Rootkits is Fun

Inserting _Co___de is Fun
Inserting Rootkits is Fun

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Needleman Wunsch

Inserting Code is Fun
Inserting Rootkits is Fun

Inserting _Co___de is Fun
Inserting Rootkits is Fun

The strings have an edit distance of 2

18 Characters the same - 10 characters different

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Edit Distances Between Functions

•  What if we turned these MicroOps into letters?
•  We could calculate the edit distance between any two functions
•  It would even tell us where to put the IF statements

S1:=0
S2:=0
PC:=PC+3
S3:=S2+4
S1:=S1+S3
S2:=S2+1
IF S2<ARG1 THEN PC:=PC-3

S1:=0
S2:=0
PC:=PC+2
S1:=S1+S2
S2:=S2+1
IF S2< ARG1 THEN PC:=PC-2

Edit Distances Between Functions

MS0MS0MR+ASSAS1ICLTSARM-
MS0MS0MR+AS4ASSAS1ICLTSARM-

S1:=0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MS0	

S2:=0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MS0	

PC:=PC+3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MR+	

S3:=S2+4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 AS4	

S1:=S1+S3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ASS	
 	
 	
 	
 	

S2:=S2+1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 AS1	

IF	
 	
 	
 	
 S2<	
 ARG1	
 THEN	
 PC:=PC-­‐3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ICLTSAMR-­‐	

S1:=0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MS0	

S2:=0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MS0	

PC:=PC+2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MR+	

S1:=S1+S2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ASS	
 	
 	
 	
 	

S2:=S2+1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 AS1	

IF	
 	
 	
 	
 S2<	
 ARG1	
 THEN	
 PC:=PC-­‐2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ICLTSAMR-­‐	

MS0MS0MR+___ASSAS1ICLTSARM-
MS0MS0MR+AS4ASSAS1ICLTSARM-

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Edit Distances Between Functions
S1:=0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MS0	

S2:=0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MS0	

PC:=loc_40	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MR+2	

S3:=S2+4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 AS4	

S1:=S1+S3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ASS	
 	
 	
 	
 	

S2:=S2+1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 AS1	

IF	
 	
 	
 	
 S2<	
 ARG1	
 THEN	
 PC:=loc_24	
 	
 	
 	
 	
 	
 	
 	
 	
 ICLTSAMR-­‐2	

S1:=0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MS0	

S2:=0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MS0	

PC:=loc_40	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MR+2	

S1:=S1+S2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ASS	
 	
 	
 	
 	

S2:=S2+1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 AS1	

IF	
 	
 	
 	
 S2<	
 ARG1	
 THEN	
 PC:=loc_24	
 	
 	
 	
 	
 	
 	
 	
 	
 ICLTSAMR-­‐2	

MS0MS0MR+2___ASSAS1ICLTSARM-2
MS0MS0MR+2AS4ASSAS1ICLTSARM-2

The string shows where to add the IF statements to make the functions that same.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Edit Distances

S1:=0
S2:=0
PC:=loc_40
IF ARG2 THEN
 S1:=S1+S2
ELSE
 S3:=S2+4
 S1:=S1+S3
S2:=S2+1
IF S2< ARG1 THEN
PC:=loc_24

MS0MS0MR+2___ASSAS1ICLTSARM-2
MS0MS0MR+2AS4ASSAS1ICLTSARM-2

If we know how costly an IF
statement is in the target
architecture, we can figure out if
merging these two function will
save space in the final firmware.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Matching Call Trees

•  Now that we can match two functions, why not
something bigger?

•  We can take each of our leaf functions and see if the
parents of that leaf function also match.

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Matching Call Trees

0

1 1

1

3

2

0

1

1

3

2

1

After matching, it
is now possible
to calculate the
edit distance of
an entire
subsystem

Distance: 8

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Finally!
Inserting the Rootkit into the Firmware!

 uint16_t crc16_update(uint16_t crc, uint8_t a){
 int i;
 crc ^= a;
 for (i = 0; i < 8; ++i){
 if (crc & 1)
 crc = (crc >> 1) ^ 0xA001;
 else
 crc = (crc >> 1);
 }
 return crc;
 }

•  For each function in the rootkit, I have found a best match function in
the target firmware

•  If mine has a CRC-16 and the target has a CRC-16, they will
have a small edit distance and get merged together

•  Any orphans that simply don’t match will need to be added to the
end

•  I can even merge two functions in the target together to gain even
more space

•  Now simply reverse the process from BNF back to the target
assembly

•  Instant firmware rootkit!

IOActive, Inc. Copyright ©2014. All Rights Reserved.

•  Miniaturizing the Attack Code
–  Spoofing with Runs Analysis
–  Triangles for Filtering Noise
–  Scale-Free Matching for Watching the Process

•  Inserting the Attack Code into the Firmware
–  MicroOps
–  Binary Normal Form
–  Abusing Needleman Wuncsh to Merge Firmware
–  Metasploit for Firmware

•  Demos

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Random Code from the Internet

•  Nobody would ever just copy
code from the Internet would
they?

•  Since we can compare code,
we can search to see if this
code is in that firmware

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Future: Metasploit for Firmware

•  There are common pieces of software used throughout
industrial control systems.
–  i.e. SquareD DNP stack

•  As long as our rootkit only needs functionality from the
common piece of code, the merge will be self-
contained.
–  It can be inserted automatically without a human
–  No need to understand the CPU
–  No need to deal with the version differences

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Demos

IOActive, Inc. Copyright ©2014. All Rights Reserved.

Questions

•  Jason Larsen
•  IOActive, Inc.

