
copyright IOActive, Inc. 2006, all rights
reserved.

DNS
2008 and the new (old) nature of

critical infrastructure

Dan Kaminsky
Director of Penetration Testing

IOActive, Inc.

What a year!

•  Significant flaw found in DNS
– You might have heard about it

•  Pretty extensive simultaneous patching
operation ensued
– Microsoft
– Linux / ISC
– Sun
– Cisco
– All released patches on July 8th

•  Expected patch rate: 50% of servers after
a year

•  Achieved patch rate: ~66% after a few

History

•  I have never been a DNSSEC supporter.
•  I’ve been researching DNS for many years, and

I’ve been – at best – neutral about the technology.
–  I just didn’t think it mattered, and the

engineering effort never seemed to be going
well.

•  What changed?
– Software engineering realities became too

obvious to ignore.

The Hypothesis
•  DNS is the only real way to scale across organizational

boundaries.
•  Because DNS is insecure, its insecurity infects everything

that uses it.
•  Because DNS is insecure, security technology refuses to use

it.
–  Security technology appears thus to have trouble scaling

•  DNS is thus the common cause of security issues, and our
inability to scalably fix them. Therefore, we need DNSSEC.
–  But is anyone actually out there, exploiting DNS, so that

they can exploit all the things built on DNS?

Acute to Chronic
•  We expected 50% patch rate after a year
•  We got 66% patch rate after a month

–  Higher, if you consider exposure by user
•  The Internet survived

–  It always survives, so that shouldn’t be too surprising
•  But things aren’t perfect either

–  There’s still a decent chunk of the network that can be
easily poisoned

–  Is anyone actually doing it?
•  David Dagon, Manos Antonakakis, and Luo ‘Daniel’

Xiapu from Georgia Tech have been monitoring the
situation closely

Attacks In The Real World

Attacks are happening.
•  It is difficult to detect poisoning attacks

–  The evidence is written in disappearing ink – you’re
poisoning a cache, which has a record expiring in some
attacker controlled number of seconds

–  There are many, many caches
–  You can’t remotely check all of them, but you can

remotely poison all of them 
•  According to Dagon et al:

–  1-3% of monitored unpatched nameservers have had a
poisoning event detected

–  Confirmed phishing attacks have been found
–  The attackers are being sneaky

eBay in the wrong network (from
Dagon et al)

Sneaky, Sneaky Bastards (We see ‘em
hiding). (More from Dagon et al)

The Flaw (1999 Edition)
•  1999: DJB says 16 bit transaction ID’s on queries

aren’t enough – attacker can brute force and
guess responses
– DNS community responds: “There has to be a

query waiting for a response, for an attacker to
guess a response. The TTL – Time To Live –
limits how rapidly an attacker can force new
queries awaiting responses. So if the TTL is
one day, an attack will take years!
• This almost became an RFC – “Forgery

Resilience” – advocating long TTL’s

The Flaw (2008 Edition)
•  2008: I point out that there are many, many ways to get

around the TTL defense
–  Really, that’s it.

•  Maybe I also found that since the attacker controls
when the query occurs, he can reliably get hundreds
of replies in before the real reply arrives

–  Without the TTL slowing down the attack, the attack
takes seconds

–  The defense against DJB’s attack didn’t work
•  But then, it was 1999, most security in 1999 didn’t

work 

Nature Of My TTL Bypass (There are
many others)

•  1) Force lookups for sibling names – 1.google.com,
2.google.com, etc. Since they’re not cached, 1/65536 lottery
for guessing correct TXID keeps getting hit

•  2) Pretend to be the legitimate name server, responding with:
–  83.google.com IN NS www.google.com

www.google.com IN A 6.6.6.6
•  3) Since the server you’re sending messages for is in-

bailiwick to google.com, it’s allowed to provide this new
address for www.google.com while answering
83.google.com.

•  There’s code for this in Metasploit

Has Anyone Here Tested The Attack
Code In Metasploit?

•  It works:
– Very reliably in testing
– Against almost all name servers
– Against almost all names

•  It doesn’t work:
– Necessarily as well, or as quickly, in the field
– Why?

• This is a very interesting question.

A Question Of Trust
•  BIND9 is a little more paranoid than many name

servers
– Nominum’s pretty paranoid too

•  If there is an answer in cache that came from the
ANSWER section, the added data in ADDITIONAL
cannot override it, even the new data comes from a
source that’s in-bailiwick
– So this is why Metasploit’s bailiwicked_host is so

reliable on a test instance of BIND9 that’s just been
booted up, and less so on a server in the field

•  In the field, you have to wait for the cached
record to expire

Not All Answers Are Found In The
Same Place

•  Many answers in a DNS cache were originally acquired via
ADDITIONAL section
–  MX Records provide a list of mail servers, and additionally their

IP addresses
–  CNAME Records provide the “Canonical Name” for a server,

and additionally the IP of that server
•  CNAME may be returned for any type
•  Additional IP may show up in Answer section, unclear if

treated as an Answer though
–  NS Records provide the next Name Server to delegate to, and

additionally the IP address of that server
•  May also be returned for any type
•  NS comes in from AUTHORITY, and is thus not an

ANSWER that’s difficult to budge
– This is by design – NS’s are long TTL records, if they

could not be overridden by anything you might see
longer outages

These Imply A Series Of
Attacks

•  MX records don’t get the ANSWER defense, so
they’re easy to hit

•  CDN’s cause major sites to be hosted via
CNAMEs, so they’re easy to hit
– www.google.com, www.whitehouse.gov,

www.navy.mil
•  Cached records need to expire eventually, so all

names eventually fall to the NS attacks
– Metasploit’s Bailiwicked_domain is thus, in the

long term, much more effective than
Bailiwicked_host

And Just To Remind…
•  Nonexistent subdomains can’t already be cached, so they’re easy

to inject
–  NXDOMAIN replacement attacks on web security model from

Jason Larsen and I, see http://www.doxpara.com/
DMK_Neut_Toor.ppt

–  Attacks against Java’s socket policy – most IP addresses don’t
have auth.4.3.2.1.in-addr.arpa style addresses registered

•  Subdomains that naturally have low TTL’s have their ANSWERs
expire naturally
–  www.facebook.com
–  Also common for CDNs
–  Luis Grangeia’s DNS Cache Snooping (querying the server with

+norecurse / RD=0) lets attacker limit attacks to just when the
target ANSWER is out of cache

To Be Clear
•  This is why we were so insistent on deploying

Source Port Randomization
•  The rule with cache policy: There’s always

another hole!
– Nicholas Weaver from UCB is trying to prove

me wrong
– He may very well 

•  Does that mean every attack survived perfectly,
given NXDOMAIN cache clearing?
– BTF (Behind The Firewall) attacks are a little

harder

Getting Our Universal Attack Working
Against BIND again

•  Ah, no 
•  Florian Weimer discussed some very interesting NXDOMAIN semantics

–  NXDOMAIN means there are no records of any type for an entire
domain – and if there any cached, all must be destroyed

–  There are actually 65,536 types
–  So:

•  1) Poison NS for a given domain
•  2) Flood DNS server with requests for incrementing types of

the name you want to clear
•  3) Flood with NXDOMAIN replies. You will eventually get one

through
–  Can use Cache Snooping to verify

•  4) Force a lookup to a sibling name. It will come to your NS,
where your ADDITIONAL record for the target name will now
have no ANSWER in its way.

•  Florian has another trick where he CNAMEs off another type – doesn’t
trick BIND

Behind Enemy Lines
•  BTF (Behind The Firewall) DNS attacks are more difficult,

because you don’t get to send queries to the victim server
yourself
–  The victim server must look up 1.google.com, 2.google.com,

etc, in order to be vulnerable to false replies for those
names

–  However, there are many applications that will allow
relatively untrusted people the ability to force a DNS lookup

•  Web Browsers
•  Mail Servers
•  See Black Ops 2008 Talk for details

–  These applications let you specify a name, but they don’t let
you specify a type, so you can’t play the NXDOMAIN game

•  But do we really need it?

Hijacking Traffic From Behind The
Firewall

•  If you can force a mail server to look up an arbitrary record, do you
force it to look up 1.google.com, 2.google.com, 3.google.com, and
so on?
–  No! Because who knows when the application will get around

to actually resolving those records? It could take thousands of
milliseconds!

•  Force the mail server to look up your own MX record
–  DNS delegates – so your reply to the MX request can force

other requests
•  Including for out-of-bailiwick names like 1.google.com,

2.google.com, and so on
–  MX records can contain many names, and they’ll all be

resolved immediately (dozens of milliseconds)
–  MX records can also be given a short TTL, so when none of the

attempted poison targets accept the mail, the MTA’s retry will
trigger a whole new cycle

What You Get

•  Mail poisoning immediately
– When you forge the fake NS for 83.google.com,

you can override the ADDITIONAL mail records
immediately, even on BIND

•  A records eventually
– Alas, cannot use NXDOMAIN cache clearing –

no way to send a referral that changes the type

The Rub

•  None of this should matter
– No important systems should have been

vulnerable
•  “I fail to understand the seriousness with

which this bug is handled though. Anybody
who uses the Internet has to assume that his
gateway is owned.”

•  What actually happened
– Anybody != Halvar Flake

Not Repeating All The Slides, But…

•  “Secure” systems are actually pretty rare in the field
–  Most things don’t even bother

•  Vast majority of the web
•  Email
•  Non-browser network applications

–  Those that try, mostly fail
•  41% of SSL certs are self-signed

–  “Who are you encrypting to?” “I DON’T KNOW!”
•  Non-browser network applications that use SSL tend not to

care if the cert is signed by anyone
–  There are some pretty scary implications

•  Automatic updaters are non-browser network applications
that assume DNS is safe

•  SSL certificates depend on email to authenticate receivers
•  “Forgot My Password” systems bypass auth entirely

–  I don’t think people understand how serious that is

1) Find victim site

2) Force an email to be sent to a
“test domain” (forces DNS lookup)

3) Check IP of DNS server used by
mail server.

4) Build name server that claims all
addresses

5) Hijack to admin

6) Find Admin’s Name

7) Forget Admin’s Password

8) Click recovery link (wrote a small
mail server)

9) Enter Administrative Interface

10) Post content. Be sure to select
“PHP Code”

11) Post PHP

12) Uh oh

What Just Happened?
•  We can forget our passwords, and have them mailed to us.

–  Admins have passwords too.
–  Admins have code execution rights on pretty much every CMS

web interface
•  Not just picking on Drupal here!

– Working closely with them on building a test module in
– this isn’t a bug in their code, any more than a
vulnerable TCP stack might be

•  You think this wouldn’t work on almost every other real
world CMS?

•  We just received a code-execution equivalent token over email
•  “I fail to understand the seriousness with which this bug is

handled though. Anybody who uses the Internet has to
assume that his gateway is owned.”

•  Why did this work?
–  Ah, thus the subject of this talk.

Obviously, this is the fault of
passwords!

•  Without passwords, there would have been nothing to forget
•  With nothing to forget, there would have been no need for a

reminder email
•  Without email, there would have been no dependency on

DNS
•  Without DNS, there would have been no exposure to cache

poisoning
•  So clearly, we need to stop using passwords and only use

SSL client certificates!
–  Strong crypto
–  Global PKI
–  $10 per user

•  There are…costs.

Passwords Scale
•  They are a fundamentally imperfect technology
•  They also scale remarkably well

–  Nothing physically to lose
–  Nothing physically to leave inside a laptop
–  Nothing that will cause you to be locked out of a building

because you left it in your laptop
–  String comparison is easy. Validation against a Certification

Authority is not.
•  Especially cross-organizationally

–  User experience is easily customizable – no need for browser
UI

•  Given very strong mandates, extensive funding, and a well
understood hierarchical authority, better can be done
–  For everybody else, passwords scale.

•  DNS scales too – like nothing else.

Why DNS Works [0]
•  DNS has first mover advantage, being built in 1983

–  Every IT shop has someone whose job it is to update the DNS
•  Why?

•  DNS’s centralized layer is very robust
–  Root and Com servers are necessarily some of the Internet’s

most reliable resources
•  They were there ten years ago
•  They will be there ten years from now
•  Lots of other things might change, but the roots will be there

– Do not underestimate how rare this is for anything in
technology

•  DNS’s decentralized layer is very hands off
–  No need to inform central authorities of every change

•  Delegation minimizes how much has to be centrally
managed

–  Cross-organizational communication is expensive
•  But why was it built in 1983?

Federation Is Hard.
•  Definition of Federation: the formation of a political unity, with a

central government, by a number of separate states, each of
which retains control of its own internal affairs.
–  Put another way: Microsoft doesn’t trust Google. Google

doesn’t trust Yahoo. Yahoo doesn’t trust CNN. All share
however a single namespace (the DNS), all control
operations within their namespace

–  DNS provides a canonical, federated, universally supported
namespace. There are no others.

•  Federation is a hard problem
–  Requires technology

•  Synchronization of distributed databases is a classically
hard problem

–  Requires more than just technology
•  Managing who is trusted to update what record there is

as much a human problem, as it is a technical problem

Everyone Federates With DNS
•  Email

–  To send a mail, check DNS to determine which server to initiate
SMTP to

•  There’s even a special record type -- MX
•  The Web

–  “Same Origin Policy”
•  Arguably the largest advance in security technology in the last

ten years
–  To determine whether one entity can access another, compare their

DNS names
•  SSL/x.509

–  Supposedly the real federated network
•  Not very reliably federated: Which root CA’s do you or do you

not trust?
•  Not very federated: Wildcard certs are difficult to acquire and

unreliable, so constant cross-company interaction required
•  Not actually independent of DNS

–  CN=DNSName.com

Everyone federates with DNS

•  Password resets use email, so that
passwords only go to the user who owns
the account

•  OpenID uses the web and its Same Origin
Policy, so that different sites can use the
same authentication server safely

•  SSL uses email, so that only the user that
controls a domain can acquire a signed
certificate for it

But There’s A Problem
•  DNS tells you how to get there, but it doesn’t tell

you what to expect when you arrive.
–  It’s the worldwide, distributed, fully federated

database that reasonably secures everything
going into the database…but can’t validate
anything coming back out.
• Public Key Infrastructure…without the keys

•  Theory: Because DNS doesn’t secure its content,
nobody will treat its payloads as security critical

•  Reality: It’s the only thing that can scalably tell
you where to go. People are using it anyway.

…and look:
•  DNS tells you where to go, but not who to expect when you arrive.
•  Email imports DNS. Email knows where to go, but not who not to

deliver mail to.
•  The web (HTTP) imports DNS. The web knows where to go, but

not if an ISP has changed anything.
•  Password resets import email, which imports DNS, know where to

go, but not actually who they’re being delivered to.
•  DNS’s inability to authenticate replies surfaces as a failure to

authenticate in system after system after system
–  We can deny these systems exist
–  We can insult their authors
–  We can pat ourselves on the back
–  Or we can start dealing with our inability to authenticate.

Put Another Way…

•  Stop arguing about whether DNS should
be used for security.

•  The ship has sailed. It is used for security,
because it scales.

•  The only thing that doesn’t use DNS for
security, is security technologies. How well
do they scale?
– Where’s my secure email?

Commercial Realities Are A Crutch

•  Have we been blaming the business guys for what’s
ultimately just poor engineering?

•  The systems we are trying to build, to make up for the fact
that DNS is insecure, are resource intensive and just do not
scale

•  We’ve spent the last year finding design bugs that break
authentication.
–  Maybe there’s something fundamentally missing, that

keeps forcing these bugs in
•  Perhaps DNS shouldn’t be at the heart of authentication.

But it is, and it’s time we start treating it that way.

So what’s it going to take?

•  First, put out the immediate fire
– What we just did

•  Next, figure out how to make DNSSEC
scale
– It doesn’t yet

•  Finally, start migrating new applications to it
– This adds its own layer of difficulty

A Few Thoughts on DNSSEC
•  The present numbers say nothing.

– DNSSEC, like all authoritative-server modifying
solutions, needs the root signed for the solution
to be meaningful
• Otherwise, the attacker just attacks the

parent
• XQID thought they got around this. Bug me

if you want to see the break in XQID.
– The root has remained unsigned for far too

long. That’s apparently going to change.
• We hope.

Why We Need The Root Signed

•  A core element of why DNS Works is that
connectivity can be bootstrapped with IP’s that
were there 10 years ago, and will be there 10
years from now

•  We already have centralization of the bare
minimum amount of data to tell us where to go

•  We just need a little more information, so we can
recognize what to expect when we get there

•  This, of course, is the simple explanation.

The Fundamental Difficulty Of
Signing The Root: PICK ANY TWO

Politics

Security Scalability

Security And Scalability:
Sign the root!

Politics

Security Scalability

•  Nameservers retrieve all their bootstrapping
data from one set of servers

• Nameservers receive keying material at the
same time they receive delegation material,
making key acquisition as scalable as delegation
acquisition

• US Department of Commerce cryptographically
asserts the legitimacy of 187 countries…DNS

Politics and Scalability: Do nothing!

Politics

Security Scalability

•  Nameservers retrieve all their bootstrapping
data from one set of servers

• US Department Of Commerce asserts the
legitimacy of 187 countries DNS namespace, but
there’s already grandfathered détente so its ok

• Internet stays broken

Politics and Security: Force DNS Servers To
Update Out-Of-Band from “Trust Anchor
Repositories”

Politics

Security Scalability

• Private companies assert the legitimacy of 187
Countries DNS namespace

• Name servers acquire and maintain keying material
for TLDs and other islands of trust for hundreds of
different semi-private trust sources through complex,
still somewhat undefined methods

• Fails catastrophically, leads to islands of resolution
alongside islands of trust

Where Things Are Going

•  General IT community: Nowhere, this DNS
thing has to work. (Scalability)

•  Security: Politics is getting in our way more
than Scalability, so…
– Trust Anchor Repositories are popping

up, to hopefully be consumed by
implementations

•  Yargh. Let DNS be DNS!

A Possible Solution?
•  Sign the root, and everyone’s TLDs
•  Implementations allow administrator opt-in to local/national

Trust Anchor Repositories
–  Russian name server admins can self-manage .ru
–  Finnish name server admins can self-manage .fi
–  American military server admins can self-

manage .gov/.mil
•  This probably requires little to no code modifications – with

no root signed today, this is how trust anchors have to work
already

The Other Side Of The Coin

•  Signing the root (with potential local trust
override) only addresses how do we get
recursive servers to recognize trust?

•  It does not solve the problem: How do we
make this deployable on the authoritative
servers that host the records in the first
place?

NO MORE DEPLOYMENT GUIDES

•  DNSSEC must, in order to scale, be far more
automated than it is today
– No manual key signing
– No manual key updating
– No risk that if you go on vacation for five days,

DNS will break
– No blaming the administrator for not knowing

the magic invocations
• We have to make most of DNSSEC

automatic.

Automate, Automate, Automate
•  Your server should sign records all by itself.
•  Signing of records should happen either in the background,

or on demand
•  Signing as a proxy to a real backend name server should be

possible
•  For DNSSEC to scale, it must be as straightforward to

install as the Source Port Randomization patch
–  That’s not to say that patch was easy
–  Just that it was a one time operation that took care of

itself (for the most part) after being deployed

Appliances?
•  Appliances are a fantastic thing.

–  Paul Wouters has been pushing DNSSEC for a long time
and has done some great work

–  Secure64 has apparently done some very good work as
well

•  For us to achieve a change in the ecosystem, the largest
player in the ecosystem needs to be upgraded
–  Or else, you can’t expect others to be able to validate

your records, and you can expect others to have records
you can validate!

•  I am trying to figure out how to make this happen for
BIND. If you have suggestions, let me know.

Integration With Registries and
Registrars

•  DNS is the only successful federated technology.
•  DNSSEC solves the problem of getting data back

out
– The registries and registrars are the human/

business factors that get data in
– Easing the business load on them is as

important as making DNSSEC manageable for
the end administrator
• We may need to explore alternate ways of

populating key material at the registries.

The DDoS Amplification Problem

•  We probably need to find a way to stop name
servers from being an effective magnifier /
obfuscator for DDoS attacks.
– This is not going away.
– This is in no way shape or form limited to just

DNS – there are other protocols that amplify too
• Hoping to work on this in 2009 as well

– This is getting worse.

DNSCurve?

•  Regarding DNSCurve, I think we have a lot
to learn from it
– DNSCurve is DJB’s concept for how to

secure DNS
• It’s based on link-based crypto instead

of anything that can be cached

DNSCurve [1]

•  What’s Good
–  It posits online key signing

• DNS material is far too dynamic, and admins
are far too harried, for the old model of the
offline keystore to make sense

– Registrars don’t have much to do – chaining is
handled by the names of name servers

DNSCurve [2]

•  What’s not so good
– There’s no code.

• Um, that matters.
–  It requires new crypto.

• ECC is standard, but the proposed curve is
not.

•  “Optimized for speed” is not actually what
you want to hear about a cryptosystem.

–  It’s not actually that fast.

DNSCurve and Performance
•  DNSSEC was designed to require no per-query crypto

operations on the servers, which may be heavily loaded
–  All operations may be done once, and cached

•  DNSCurve does a crypto operation per query
–  With DJB’s sample code, a laptop that can do 15,000

DNS queries a second can do maybe 10,000 ECC
operations per second. With 1 operation inbound and 1
operation outbound, that’s 100% CPU on 1/3rd the traffic
before you’ve parsed a single DNS packet

•  Could possible be optimized, but why?

The Big Problem
•  There’s no way to achieve end-to-end trust with DNSCurve.

–  With DNSSEC, eventually we can envision clients that do
their own validation, using the name server infrastructure
just to cach

–  DNSCurve offers a choice: Either abandon end-to-end
trust (stub resolver doesn’t talk to the real heirarchy), or
abandon caching (stub resolver does talk to the
heirarchy).

•  The DNS cannot absorb a 100x increase in load,
even without added CPU hit from the crypto.

•  We cannot fix the applications of the future without end
to end trust being a first class citizen in DNS security.
Link based crypto cannot scalably achieve this.

Nonetheless

•  Again, DNSCurve has some really cool
ideas for how to make DNS more secure.

•  We have more to learn from DJB!

Conclusions
•  1) Fixing the DNS with SPR was necessary, due to the

extensive set of attacks against it that were all mitigated
severely with this one approach and the scale of systems
that were threatened if DNS wasn’t fixed.

•  2) People are using DNS because it solves their critical need
for federation. In the choice between “doesn’t work” and
“doesn’t work securely”, more systems than we’d like to
admit choose the latter.

•  3) Any fix to DNS, to make it secure, needs to still work.
•  4) Substantial work needs to be done with DNSSEC

implementations to make them scale in the real world, even
independent of the politics

•  5) Once we make DNS secure, an entire class of security
problems may become possible to efficiently solve.

One More Thing…

•  Remember when I polluted doxpara.com,
so that I could collect the password from
mail.doxpara.com?

I also polluted backend.doxpara.com. We
REALLY need to fix DNS.

