

SmartGrid Device Security Adventures in a new medium

By Mike Davis - Senior Security Consultant at Black Hat USA 2009

Disclaimers

- I'm not a power systems engineer.. Just a geek..
- I don't agree with the cyber-war world ending skynet has risen -FUD!
- As a concept I think smart meters are a good idea
- I don't have any meters with me (don't ask)
- I'm not going to "out" any vendors (don't ask)
- I'm not going to release worm source code (don't ask)
- Not *all* smart meters are this bad, these are general observations of smart meters <u>I have seen</u>.

What is the smart grid?

http://earth2tech.files.wordpress.com/2008/04/silver-demo.jpg

What is the Smart Grid?

- Nobody knows what it really is.. No really..
- Biggest component is "smart meters", they provide the hub for communications as well as being a sensor node.
- "Smart" meters have been around for a while now. This isn't new.
- Supposed to make the electrical grid more efficient by providing a sensor network of usage
- Some of the stuff is out there
 - Plug in cars used as spinning reserves
 - Solar power generation at home
 - Power usage Awareness
 - "smart" in-home devices

But mostly is about money...

- lower costs for reading meters (they hope)
 - Fewer people needed to read meters
- "Remote Disconnect"
 - For customers who do not pay on time
 - Customers in homes with a "high turn-over rate"
 - "Increased Customer Satisfaction"
 - Some vendors/utilities seeing 100% remote disconnect.
- More timely awareness of real usage.
- Stimulus money for smart meters.. But its first come first serve.

Basic anatomy of a smart meter

Smart Meters

Smarter Meters (inside)

Smarter Meters (COMS)

Smarter Meters (COMS)

What's the difference?

- Older:
 - Low power radios with short range, sometimes inductively coupled communications
 - Broadcast only
 - Most didn't even make physical contact with the metrology
 - Most firmware was permanent
 - No features other then metrology
- Newer:
 - Long range High power radios, often in licensed spectrum
 - Two way pager networks, Cellular networks
 - Wireless firmware updates
 - "Remote Disconnect"
 - TCP/IP Like p2p networking

How can you break a meter?

- Inherent Problems
 - Very limited RAM
 - Not a lot of room in flash storage for program code (or error checking)
 - External Storage can be risky
 - Key distribution and management can be difficult
- Software flaws
 - Buffer/Integer overflows.. All the old flaws we know and love
 - State machine flaws (TCP, authentication schemes?
- Hardware Weaknesses
 - "Bunny" attacks (clear R/O "Fuse")
 - "Goodspeed" style timing attacks to remove SBL "password"
 - Good old fashioned bus sniffing attacks
 - Clock speed and Power glitching attacks are becoming common
 - RADIOS CAN BECOME AN ATTACKERS TOOL!

• Photos of some ICS's.. Jtag connectors FIXME

Microchip PIC

- Locals variables promoted to global
- Very small stack space (7 deep in some models)
- Cant jump to a pointer! Neat!
- No real source of entropy.
- 4:1 Clock to instruction cycle ratio makes timing attacks easier
- Can flash itself, but this generally requires an boot-loader
- Buffer overflows can have strange consequences due to overflowing into "special function registers"

TI MSP430

- Von Neumann architecture
- Locals variables promoted to global
- Very small stack space
- No memory protection
- Only source of entropy cannot be protected!
- Can flash itself!
 - Does have "r/w" flag
 - "r/w" is often disabled to assist non-volatile storage
 - "r/w" often disabled during "decompression" routines
- Malware can hook interrupt vectors allowing "normal" meter function
 - Malware can patch and re-patch firmware

Ok, so they're hackable, now what?

- First we had to prove that this was really a threat
- We needed to be sure we were right about the extent of the threat.
- The logical questions for us were:
 - Could these vulnerabilities be leveraged to gains more control over the network?
 - Could an attacker increase his potential range?
 - Could an attacker switch enough power with just meters that it may fall under federal guidelines?
- So for us the obvious next step is self replicating code..

Fair questions

- Have you tested the worm in the real world?
- What would an attacker gain by doing something like this?
- Wouldn't any worm propagation be too slow to matter?
- How far could something like this spread?

Meter Worm Sim

- Quick Sim facts:
 - Using GPS points of 20,000 actual addresses (almost)
 - Radio range, SNR ,collisions and required protocol states are taken into account.
 - Allows us to model propagation under different physical and logical constraints.
 - Sim-Worm's propagation logic has been restricted to what our PoC could do.
- Sim-Lessons:
 - What could the utility do to stop the worm?

So.. What now?

- Possible implications for the bulk power system?
 - "the grid has been demonstrated in quite a few occasions to be kind of fragile, that a transient condition is not well managed, the grid often responds in a way that causes more widespread outages and creates a situation that is difficult to recover from; so even minor temporary transient problems can cause major instabilities in the grid" – EPRI call 7-7-09
- This generation of smart meters must be made as reliable to the consumer as the old mechanical meters.
- Meters should be built to recover from a full compromise, it will happen in the real world eventually!
- Customers need to pressure their utilities to make conservative choices when it comes to the security of their meters!

Stuff

- NETWORK SECURITY ARCHITECTURE FOR DEMAND RESPONSE/SENSOR NETWORKS
 - (<u>http://sites.energetics.com/madri/toolbox/pdfs/standards/</u> <u>network_security_final_report.pdf</u>)
- OpenSG (<u>http://osgug.ucaiug.org</u>)
- Electric Power Research Institute (<u>http://www.epri.com/</u>)
- NTA -8150

Special thanks to: Jason Larson, Travis Goodspeed

Questions?

For More Information:

E-mail: info@ioactive.com Phone: 1.866.760.0222 Web: www.ioactive.com

