
©2018 IOActive, Inc. All rights reserved. [1]

IOActive Security Advisory

Title Android (AOSP) User Dictionary Content Provider Authorization
Bypass (CVE-2018-9375)

Severity Moderate

Discovered by Daniel Kachakil

Advisory Date August 2, 2018

Affected Products
Android Open Source Project (AOSP)

Android versions: 6.0, 6.0.1, 7.0, 7.1.1, 7.1.2, 8.0, and 8.1.

Impact
A malicious application without any permission could perform the following actions on the
user personal dictionary:

• Retrieve all entries

• Update all entries

• Delete all entries

Background
Android provides a user personal dictionary, which stores the spellings of non-standard
words that the user wants to keep. This dictionary is usually accessed from “Settings →
Language & keyboard → Personal dictionary” and may contain sensitive information, such
as names, addresses, phone numbers, emails, passwords, or even credit card numbers.

While in theory access to the user’s personal dictionary should only be granted to privileged
accounts, authorized Input Method Editors (IMEs), and spell checkers, IOActive identified a
way to bypass some of these restrictions. By exploiting this vulnerability, a malicious
application can update, delete, or even retrieve all its contents without requiring permission
or user interaction.

Technical Details
In older versions of Android, access to the personal dictionary was protected by the
following permissions:

• android.permission.READ_USER_DICTIONARY

• android.permission.WRITE_USER_DICTIONARY

©2018 IOActive, Inc. All rights reserved. [2]

After a commit in the source code pushed to the repository on June 23rd, 2015, this
behavior changed.1 The permissions were replaced by an internal check, so, theoretically,
only privileged accounts (such as root and system), the enabled IMEs, and spell
checkers could access the user personal dictionary content provider
(content://user_dictionary/words).

In that change, a new private function named canCallerAccessUserDictionary()
was introduced and was invoked from all the standard query(), insert(), update(),
and delete() functions in this content provider, to prevent unauthorized calls to these
functions.

While the change seems to be effective in both the query()and insert() functions, the
authorization check occurs too late in update() and delete(), introducing a security
vulnerability that allows any application to successfully invoke the affected functions via the
exposed content provider, therefore bypassing the misplaced authorization check.

In the following code for the UserDictionaryProvider class,2 pay attention to the
highlighted fragments and see how the authorization checks are performed after the
database is already altered:

@Override
public int delete(Uri uri, String where, String[] whereArgs) {
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case WORDS:
 count = db.delete(USERDICT_TABLE_NAME, where, whereArgs);
 break;

 case WORD_ID:
 String wordId = uri.getPathSegments().get(1);
 count = db.delete(USERDICT_TABLE_NAME, Words._ID + "=" +
wordId
 + (!TextUtils.isEmpty(where) ? " AND (" + where + ')'
: ""), whereArgs);
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);

1 Gerrit’s Change-Id: I6c5716d4d6ea9d5f55a71b6268d34f4faa3ac043
https://android.googlesource.com/platform/packages/providers/UserDictionaryProvider/+/e0e0e0c9b27e10f7e33c371
c490fdae8b634f117
2 At the time of discovery, it was found in the AOSP master branch:
https://android.googlesource.com/platform/packages/providers/UserDictionaryProvider/+/master/src/com/android/prov
iders/userdictionary/UserDictionaryProvider.java
After the fix, the equivalent contents can be found in the following commit:
https://android.googlesource.com/platform/packages/providers/UserDictionaryProvider/+/0272515f306cf7f12d2babe0
3d625850990a00c1/src/com/android/providers/userdictionary/UserDictionaryProvider.java

content://user_dictionary/words
https://android.googlesource.com/platform/packages/providers/UserDictionaryProvider/+/e0e0e0c9b27e10f7e33c371
https://android.googlesource.com/platform/packages/providers/UserDictionaryProvider/+/master/src/com/android/prov
https://android.googlesource.com/platform/packages/providers/UserDictionaryProvider/+/0272515f306cf7f12d2babe0

©2018 IOActive, Inc. All rights reserved. [3]

 }

 // Only the enabled IMEs and spell checkers can access this provider.
 if (!canCallerAccessUserDictionary()) {
 return 0;
 }

 getContext().getContentResolver().notifyChange(uri, null);
 mBackupManager.dataChanged();
 return count;
}

@Override
public int update(Uri uri, ContentValues values, String where, String[]
whereArgs) {
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case WORDS:
 count = db.update(USERDICT_TABLE_NAME, values, where,
whereArgs);
 break;

 case WORD_ID:
 String wordId = uri.getPathSegments().get(1);
 count = db.update(USERDICT_TABLE_NAME, values, Words._ID + "="
+ wordId
 + (!TextUtils.isEmpty(where) ? " AND (" + where + ')'
: ""), whereArgs);
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 // Only the enabled IMEs and spell checkers can access this provider.
 if (!canCallerAccessUserDictionary()) {
 return 0;
 }

 getContext().getContentResolver().notifyChange(uri, null);
 mBackupManager.dataChanged();
 return count;
}

Finally, notice how the AndroidManifest.xml file does not provide any additional
protection (e.g. intent filters or permissions) to the explicitly exported content provider:
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.android.providers.userdictionary"
 android:sharedUserId="android.uid.shared">

 <application android:process="android.process.acore"
 android:label="@string/app_label"
 android:allowClearUserData="false"

http://schemas.android.com/apk/res/android

©2018 IOActive, Inc. All rights reserved. [4]

 android:backupAgent="DictionaryBackupAgent"
 android:killAfterRestore="false"
 android:usesCleartextTraffic="false"
 >
 <provider android:name="UserDictionaryProvider"
 android:authorities="user_dictionary"
 android:syncable="false"
 android:multiprocess="false"
 android:exported="true" />
 </application>
</manifest>

It is trivial for an attacker to update the contents of the user dictionary by invoking code like
the following from any malicious application, without the need to ask for permission:
ContentValues values = new ContentValues();
values.put(UserDictionary.Words.WORD, "IOActive");

getContentResolver().update(UserDictionary.Words.CONTENT_URI, values,
 null, null);

It would be also trivial to delete any content, including the entire personal dictionary:
getContentResolver().delete(UserDictionary.Words.CONTENT_URI, null, null);

Both methods (update and delete) are supposed to return the number of affected rows,
but, in this case (for non-legitimate invocations), they will always return zero, making it
slightly more difficult for an attacker to extract information from the content provider.

Even if the query function is not directly affected by this vulnerability, it is still possible to
dump the entire contents by exploiting a time-based, side-channel attack. The where
argument is fully controllable by the attacker, and a successful update of any row takes
more time to execute than the same statement when it does not affect any row.

Proof of Concept
Consider the following code fragment running locally from a malicious application:
ContentValues values = new ContentValues();
values.put(UserDictionary.Words._ID, 1);

long t0 = System.nanoTime();
for (int i=0; i<200; i++) {
 getContentResolver().update(UserDictionary.Words.CONTENT_URI, values,
 "_id = 1 AND word LIKE 'a%'", null);
}
long t1 = System.nanoTime();

Invoking the very same statement enough times (e.g. 200 times, depending on the device),
the time difference (t1-t0) between an SQL condition that evaluates to “true” and the
ones that evaluate to “false” will be noticeable, allowing the attacker to extract all the

©2018 IOActive, Inc. All rights reserved. [5]

information in the affected database by exploiting a classic time-based, Boolean blind SQL
injection attack.

Therefore, if the first user-defined word in the dictionary starts with the letter “a”, the code
fragment will take more time to execute (e.g. 5 seconds), compared to the lesser time
required when the guess is false (e.g. 2 seconds), since no row will be actually updated in
that case. If the guess is wrong, we can try with “b”, “c”, and so on. If the guess is correct,
that means that we know the first character of the word, so we can proceed with the second
character using the same technique, and so on.

Notice how the database contents will not actually be altered, even when the condition is
true (it will update the “_id” value to its same original value), but other columns (such as
“frequency” or “locale”) can also be arbitrarily smashed with any constant value if the
attacker does not care about their contents, leading to the same results.

This process could be fully automated, and optimized with more advanced techniques, all
trivial to implement, such as calibrating the number of repetitions, applying the binary
search algorithm, injecting sub-selects to determine the first identifier (e.g. “SELECT
MIN(_id) FROM words”), etc., reducing the overall effort required in runtime to dump all
the personal dictionary contents.

Fixes
One of the simplest fixes would be to call the “canCallerAccessUserDictionary” function
and check if the caller is allowed to invoke the method before doing anything else.

A standard patch file is provided below as a reference:
--- a/src/com/android/providers/userdictionary/UserDictionaryProvider.java
+++ b/src/com/android/providers/userdictionary/UserDictionaryProvider.java
@@ -252,6 +252,11 @@

 @Override
 public int delete(Uri uri, String where, String[] whereArgs) {
+ // Only the enabled IMEs and spell checkers can access this
provider.
+ if (!canCallerAccessUserDictionary()) {
+ return 0;
+ }
+
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
@@ -269,11 +274,6 @@
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

- // Only the enabled IMEs and spell checkers can access this
provider.
- if (!canCallerAccessUserDictionary()) {
- return 0;
- }
-

©2018 IOActive, Inc. All rights reserved. [6]

 getContext().getContentResolver().notifyChange(uri, null);
 mBackupManager.dataChanged();
 return count;
@@ -281,6 +281,11 @@

 @Override
 public int update(Uri uri, ContentValues values, String where,
String[] whereArgs) {
+ // Only the enabled IMEs and spell checkers can access this
provider.
+ if (!canCallerAccessUserDictionary()) {
+ return 0;
+ }
+
 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
@@ -298,11 +303,6 @@
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

- // Only the enabled IMEs and spell checkers can access this
provider.
- if (!canCallerAccessUserDictionary()) {
- return 0;
- }
-
 getContext().getContentResolver().notifyChange(uri, null);
 mBackupManager.dataChanged();
 return count;

Mitigation
The vulnerability has been fixed in the official repository. Specifically, in the following
commit:

https://android.googlesource.com/platform/packages/providers/UserDictionaryProvider/+/cc
cf7d5c98fc81ff4483f921fb4ebfa974add9c6

Several vendors integrating Android had released security patches for this vulnerability in
June 2018. IOActive recommends applying the latest security patches from your vendor. If
for any reason it is not possible to apply such updates, consider reviewing the contents of
your personal dictionary and make sure it does not contain any sensitive information in the
unlikely event the issue becomes actively exploited.

Timeline
2018-03-13 IOActive discovers vulnerability

2018-03-14 IOActive reports vulnerability to Google

2018-06-07 Google fixes the vulnerability

2018-08-02 IOActive advisory published

https://android.googlesource.com/platform/packages/providers/UserDictionaryProvider/+/cc

