

http://www.ioactive.com Page 1

IOActive Security Advisory

Title Buffer Overflow in MonoBigInteger Montgomery Reduction Method

Severity High

Date Discovered 07.25.2007

Date Reported 08.24.2007

Date Disclosed 09.20.2007

Authors Jason Larsen, Walter Pearce

Affected Products
Mono Framework, all versions prior to 1.2.6

Synopsis
IOActive has discovered an exploitable buffer overflow vulnerability in the Montgomery
reduction method within the Mono Frameworks BigInteger Class (Mono.Math.BigInteger).

Description
When the unsafe Mono.Math.BigInteger.Montgomery.Reduce method
(Mono\mcs\class\Mono.Security\Mono.Math\BigInteger.cs) is supplied two BigInteger
objects of varying length, a buffer copy results in a class buffer overflow, allowing for
arbitrary overwriting of object structures and pointers, and leading to code execution.
Additionally, this method is utilized by the RSA Cryptography methods implemented within
the Mono Framework, thus allowing for possible remote code execution under the correct
conditions.

Technical Details
The buffer overflow takes place during the copy and reduction loop performed within the
Reduce method of the Montgomery sealed class. The method itself takes three
arguments—two BigInteger instances and a prime number—in order to perform the
reduction.

public static unsafe BigInteger Reduce (BigInteger n, BigInteger
m, uint mPrime)

Two pointers are created, one for each BigInteger data segment, that contain the byte array
representation of the large number. Finally, the actual reduction is performed, which
consists of a pointer walk and copy between the two buffers without proper length
limitations. The vulnerability exists when the array in m is greater than the array in n.

http://www.ioactive.com Page 2

for (; j < m.length; j++) {
c += (ulong)u_i * (ulong)*(mP++) + *(aSP++);
*(aDP++) = (uint)c;
c >>= 32;

In the scenario where m is larger than n, aSP (the pointer to n) writes out of the array's
bounds, overwriting memory within the block allocated for the method. In this manner,
arbitrary code execution can be obtained by overwriting referenced object structures and
pointers that are later de-referenced and operated upon.

Remediation
Mono 1.2.6 and later have been patched for this issue. Upgrade to the latest bug-fix version
of the Mono Framework.

