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Prologue 
Over the past three years, there has been a significant shift 

in security architecture and priority throughout the industry. 
Consequently, the research and development areas of the industry 
have drastically changed as well; In a nutshell, leaving much to be 
desired.  Only five years ago, an abundance of buffer overflow 
articles, worms, exploits, and advances in general were the norm.  
Everyone knew the basics when it came to writing an exploit, and 
everyone wrote a paper on it.  

Today, to put it lightly, that is no longer the case.  Although 
Unix based exploitation remains largely the same (with the exception 
of StackGuard and the like); Win32 auditing, exploitation and 
research has become far, far more complex.  With the release of 
Windows XP SP2 and Windows 2003, everything moved to a new 
level.  The sun had set for the ‘simple’ core system exploits with the 
advent of DEP (Data Execution Protection) and the implementation 
of a host of new security measures within the new compilers, not 
even considering the .NET Framework and the implications this has 
had on development as a whole. 

This paper is meant to focus on these changes in 
architecture made to prevent exploitation of win32 processes, and 
how to break them.  After a long search for articles, papers, 
examples, and other resources covering this area, I found the 
internet rather lacking.  It does not seem (in my eyes) to be a well 
covered area.  To be more specific, the only easily locatable and 
detailed writing on this specific subject I was able to find was David 
Litchfield’s “Defeating the Stack Based Buffer Overflow Prevention 
Mechanism of Microsoft Windows 2003 Server.” (Reference 1). I 
certainly may have missed other articles on the subject matter, and I 
apologize in advance for any repetitiveness in this article with others 
(many of the topics covered here are re-explanations of David 
Litchfield’s paper).  
 Due to this, I felt it appropriate to re-iterate the things I have 
learned in the general areas of Win32 exploitation, and go over in 
detail the techniques to evade stack protection in Windows XP SP2 
and Windows 2003. 
 
 
 

What You Need 
 Lets not forget none of this happens out of thin air (snicker 
snicker?), and I’ve compiled a list of the applications and general 
knowledge I’ll assume you have (and that I use in my examples and 
explanations) to make it through this eccentric piece of text alive. 
 
Our Toys: 

- A Win32 C/C++ Compiler (I’m using Visual Studio .NET 
2005, so all examples will be as such) 

- OllyDbg or an equivalently bad-looking debugger that 
serves its purpose that you are so heart-warmingly 
dedicated to. (SoftIce or WinDbg may do, but don’t expect 
instructions on how to use them) 

Optional Goodies which are cool to have anyways: 
- The Win32 NASM Assembler  
- IDA Pro always comes in handy for disassembling an 

application (Then again, if you have this either its an illegal 
copy or you probably know more about all this than me) 

- 1(or more) Brain(s) 
- Microsoft’s Vadump.exe Utility 

 
 

Perfect. Now you have everything applications wise you’ll need 
to follow my wonderful step-by-step explanations. Next, here are 
some basic topics that I will be covering, but not in any sort of 
real detail past self-reinforcement.  I recommend you read all the 
references at the end of this paper if you require any ‘freshening 
up’ in these areas.  

 
- Understanding of Assembly in the Win32 Environment 
- General memory stack layout and structure 
- How buffer overflows work (If you don’t know this, I don’t 

think you should be here) 
- SEH Overwrite Exploitation 
- Anything else that I can’t think of you’ll obviously notice 

 
I’ll re-iterate, references are available at the bottom for all these 
topics and anything else I thought was good pertaining to the subject 
at hand. 



 

Explanation of Win32 Buffer Overflows 
 
Back to Basics 

The basics of performing successful buffer overflows in 
Windows applications is practically the same as with Unix based 
overflows. There are only a few slight differences in Windows rather 
than Unix when it comes to the basics.  I only mention this because I 
(and I would think most anyone that looked into security at all), 
began learning buffer overflows and the like in Unix. I know I did, and 
I believe it makes sense making such a relationship for anyone out 
there who may be in the same boat as I was.  So, Let’s dive right in 
shall we? 
 
Appendix 1 - Vuln1.c  
#include <stdio.h> 
 
int main(int argc, char *argv[]) { 
 char buffer[200]; 
 
 strcpy(buffer, argv[1]); 
 
 return(0); 
} 

 
Obviously this example is pretty simple. I just want to point out a few 
differences. In Unix, an exploit for this would be rather simple, 
regardless of which approach you took.  The simplest and generally 
most understood method in Unix is: 

 
- Overflow the buffer and overwrite the routine address of the 

routine with an address within our buffer 
 

- Upon the functioning calling the RET opcode, EIP is 
switched to our supplied address, thus rendering control of 
execution flow to us (Our goal, yippee) 
 

- Within the buffer, we have executable shellcode that is then 
ran and gives us our shell, connectback, whatever we want. 

 
Yes, yes, I know. This is all very basic. However, within Windows the 
approach is slightly different for the sake of simplicity.  Rather than 
overwriting EIP with an address within our buffer, it Is simpler to point 

to an address of code within a loaded library that is static. Meaning, 
we point to an external library that will execute our shellcode for us.   
Let’s see a pretty picture of this. 
 
Figure 1 - illustration of compromised execution path 

 
 
 
Above, in my excellent paint.exe representation of what I just 
previously explained, you can see the flow of execution with the red 
lines.  The Return Address points to the address of the ‘JMP ESP’ 
instruction inside a loaded library (Which are only compile-
dependant, so addresses are static across boots and versions). The 
ESP register, for my picture, happens to be the beginning of our 
buffer.  When this JMP opcode is executed, it bounces back to our 
buffer, thus beginning execution on our code in a rather elegant way.  
This method of returning to loaded libraries and jumping back allows 
for a much larger range of attacks; be it tiny payloads by calling 
already loaded and located functions, or as you’ll see later, to more 
devious means.  
 Note however, that for the sake of this example ESP was set 
to the beginning of our buffer. The majority of the time, this sadly is 



 

not the case.  It may take a certain amount of data manipulation and 
search to find the correct opcode in combination with the right 
register to be able to get back somewhere in our buffer.  This will be 
covered in further detail later on. 
 
SEH Unveiled 

SEH, or Structured Exception Handling, has become a 
rather useful tool in performing exploits in the windows environment. 
It now only allows for more attack vectors, but also cross-platform 
and more reliable exploits in general (Uh oh!). Exceptions allow us 
even further flexibility in exploiting applications, and should be 
understood before you try to make use of it.   

Within the Win32 Framework, exceptions are thrown 
whenever an error or illegal instruction occurs, be it thrown from the 
user or the operating system itself.  Programmatically, when an 
exception is thrown, the application has a chance to catch the 
exception and deal with it, and thus allow the program to continue 
execution.  If no user-defined exception handlers are defined, than 
the operating system takes over, catching the exception, killing the 
process and giving you that wonderful ‘problem’ window. Send Error 
Report indeed, Dr. Watson (hah?). 
 
Figure 2 - jaynus breaking stuff 

 
 

 
 Now, seeing this window is usually a good thing in our field, 
oddly enough.  But its time to understand what exactly causes this 
voodoo magic window to appear. 
 

Inside any given Win32 process, the active stack now 
contains pointers for these new-fangled exception handlers. These 
are used and referenced by the system on the event of an illegal 
operation.  By default, these pointers point to system handlers, thus 
giving us our error message. The references are good old struct’s, 
defined as follows. 
  
 
Appendix 2 - _EXCEPTION_REGISTRATION Structure 
typedef struct _EXCEPTION_REGISTRATION { 

 _EXCEPTION_REGISTRATION *next; 

 PEXCEPTION_HANDLER handler; 

} EXCEPTION_REGISTRATION, *PEXCEPTION_REGISTRATION; 

 
The exception handlers for any given process are always 

organized in a linked list ‘chain’. That is, each record contains a 
pointer to the next record (_EXCEPTION_REGISTRATION *next), 
the terminating records pointer containing 0xFFFFFFFF.  
 
Figure 3 – OllyDbg Screenshot of vuln1.exe’s stack  

 



 

 
The chain of handlers is always on the bottom of the stack, 

conveniently enough labeled for us by OllyDbg.  In the actual stack, 
this data is stored in 16-byte succession and ending with when the 
pointer is terminating. In Figure 3, you can see the OllyDbg output of 
the stack, with the labeled ‘End of SEH chain’ at 0012ffe0.  So, we 
can see directly below that terminator in the next 8 bytes at 0012ffe4, 
the default handler for our vuln1.c executable is a pointer to 
7c8399f3, which so happens to reside in the loaded address space 
of kernel32.dll and is the default exception handler for this 
compilation.  Of course, this is within an application with no defined 
exception handlers, thus the compiled defaults set in.  In other 
circumstances, the exception chain will grow longer, containing more 
handlers for different operations.   

 
Figure 4 – Illustration of SEH Chain location on the stack 

  
 

 All that mumbo-jumbo aside, it is perfectly possible to abuse 
this handler for a multitude of purposes, the most obvious being 
taking control of the execution flow of the program.  If we can get any 
type of exception to be thrown (an illegal EIP from an overflow?) then 
this exception handler will be called. What is to happen if we 
overwrite the stack further than the buffer, past the return address, 
and onto the SEH chain? We can use the same jump back method 
discussed above, thus dropping the chain of execution into our 
buffer.   
 

Returning with instructions inside loaded modules 
As I mentioned before, I would come back to this jump back 

method from loaded libraries. Now I am.  Finding these instructions 
somewhere inside all the loaded library modules could be a very 
monotonous task without some sort of automation.  Using your 
debugger to search the loaded modules for the appropriate JMP, 
call, or any other series of instructions you need to call is one way of 
doing it, but usually only when something a bit more custom is 
required.  Microsoft’s Vadump.exe (Link 1) is also capable of serving 
this purpose, dumping the address space of the specified process 
PID.  For a bit faster and user-friendly approach however, one can 
always search the Metasploit Opcode Database, which contains a 
database of the global Windows DLL’s useful instructions across 
multiple versions. 

As I said, we are not always lucky enough to have a register 
pointing directly at our buffer or shellcode. In these cases, we would 
need to return to more specific instructions to get to our actual 
shellcode.  When the exception handler pointer or return address is 
being executed, let us say for instance the CPU Registers look like 
this: 

 
Register  Address 

EAX   00000000 
ECX   0012FFB0 
EDX   41414141 
EBX   41414141 
ESP   0012FFC4 
EBP   0012FFF0 
ESI   FFFFFFFF 
EDI   7C910738 
EIP   41414141   
 
As you can see above, this example is as if we have just overflowed 
our application. The EIP and EBX have been overwritten by our 
buffer data, and the rest of the registers are however the application 
left them.  These two registers were overwritten with the execution of 
the return code, and we would have conventional control of the 
process via the EIP. However, let us pretend our stack looks like the 
following and we can go a step further with SEH usage. 
 
 



 

Address  Data 

0012FFC4 00000000 <------- Address of ESP 
0012FFC8 459c2fee <------- Data 
0012FFCC 41414141 <------- beginning of our buffer 
0012FFC0 41414141 
0012FFC4 41414141 
 
This is a rather rudimentary example, but as you can see if we were 
to point our return address or exception handler at a JMP ESP 
instruction, it wouldn’t do us any good because the actual address 
ESP references (0012FFC4) is not part of our stack. Therefore, we 
would want to use another instruction from our libraries that would 
give us an appropriate location. In this case, it would be ideal to find 
a CALL [ESP + 8], because our stack begins 8 bytes below the 
address ESP references.  Simple enough, yes? Yes. But with the 
new protection mechanisms in Windows XP SP2 and Windows 
2003, we have to change our methods, and sadly it does get a bit 
more complicated. 
 

New Protection Mechanisms in Windows XP 
SP2 and Windows 2003 and  
Visual Studio .NET 
 
Overview 
 With the advent of Windows 2003, a number of new 
mechanisms were created in an attempt to thwart security 
vulnerabilities and disable the attack vectors we use today.  Although 
I applaud Microsoft for this attempt, it is flawed.  DEP (Data 
Execution Protection) was implemented as a security measure in 
Windows 2003, Windows XP, and also is the same basic 
mechanisms behind Visual Studio .NET’s /GS compilation flag.  As it 
was so daftly said before me, “Currently the stack protection built into 
Windows 2003 can be defeated”, all it takes is a lot of ingenuity and 
a new perspective on things.  I’m getting ahead of myself however.  
We will start with the basics. 
 
Stack Cookies 
 First and most importantly, a type of ‘Cookie’ (or canary, or 
whatever you want to call it) has been added to the stack.  The 

cookie is an 8-byte unsigned int pseudo-randomly generated value 
put directly in front of the return address.  When I say ‘pseudo-
random’, don’t think of guessing it. It’s a virtual impossibility. If you’re 
interested, see Appendix 2 on how these cookies are actually 
generated.  This cookie is then saved in a secure version in the .data 
section of the executable upon execution; whenever a return address 
is called, this cookie is authenticated against this saved version.  If 
these cookies do not match, then a security exception is thrown and 
the application is stopped.  
 
Figure 5 – Illustration of Cookie location on the stack 

 
 This all boils down to one conclusion; when the buffer is 
overrun in an attempt to gain control of execution, this stack cookie is 
going to have to be overwritten on the way to the return address or 
the SEH chain, and the cookie will be checked before any execution 
of our code is done, and the process will be terminated.  Surprisingly 
enough this comes with little affect to processing times and has 
certainly been well implemented by Microsoft. 
 
When a cookie is all alone 
 David Litchfield best covered this topic in his paper in 
Reference 1, but I believe it is best to rehash from a different 
perspective.  Let’s take a deeper look into what happens when the 
cookie is not validated by its authorized sister in the .data section of 
the stack. 
 When the discrepancy is first detected, the system checks 
for a security handler in the .data section of the executable.  In most 



 

instances this is not defined, but if it is this handler processes first 
and then the exception is handled and nothing is given to the 
system.  If, and most commonly, no handler is defined, the 
UnhandledExceptionFilter method is called.  This eventually leads to 
the generic error message for all unhandled exceptions in win32 
applications, where the ReportFault method is called and the window 
in Figure 2 is displayed.   
 
Authentication Tables 
 In DEP protected executables, and executables compiled 
with the /GS flag, authenticated cookie values are saved in the .data 
section of the header, as well as authenticate saved addresses to 
the security handlers of the binary.  That is, it saves a list of the 
pointers to registered exception handlers, and checks the address of 
the handler against this list before executing.  If the address is not in 
the list, it does not execute it.   
 
Checking for security handlers in practice 
 
Appendix 4 – DeclaredSEH.c 
#include <stdio.h> 
#include <windows.h> 
 
int main(int argc, char *argv[]) { 
 char buffer[200]; 
 
  
 __try { 
  strcpy(buffer, argv[1]); 
 } __except(GetExceptionCode()) { 
  printf("Exception Raised\n\n"); 
 } 
 
 
 return 0; 
} 

 
 Compiling the code snippet above, we can search the .data 
section of memory with OllyDbg for these authenticated handler 
addresses, being that we have defined an exception handler in our 
application.  This only comes into play when an exception handler 
has been declared by the programmers, which is under normal 

circumstances a rare case. Nonetheless, knowing the mechanics 
behind the exceptions is a must to truly understand what is going on.  
 
 For example, compile this snippet using Visual Studio .NET.  
Open it for debugging in OllyDbg, without any arguments. We don’t 
want any arguments because this will result in an exception being 
thrown inside strcpy because argv[1] is an empty pointer, therefore 
an access violation occurs.  
 Inside OllyDbg, open the memory window. At the bottom, 
there is the data block section of the main thread. In this section of 
memory, we can see at the very top is “(Pointer to SEH Chain)”.  
This is the executables storage location for the address of the first 
item in the SEH Chain.   
 Now, this is only the default location upon memory load of 
the application.  We want to see if this executable has its own 
declared exception handlers, and not just the default win32.  If the 
executable has its own declared handlers, we can watch this data 
location for changes to see when it loads the SEH Chain, and 
whether the address is local to the process.  Right click on the 
Pointer address, and set a ‘Hardware, on write’ breakpoint, and then 
run the application. 
 The application will break when the address in memory is 
written too many times; just continue running through it until we see 
our instruction code has broken out of the initial windows initialization 
and into our actual code block.  In this instance, once the pointer to 
the SEH chain has changed to 0x0012FFB0, stop running the 
application.  Go ahead and switch to the active stacks memory 
window and go to this address.  As you can see in Figure 6, this 
address contains a _EXCEPTION_REGISTRATION instance, which 
when you follow each point to the next SEH record, the chain looks 
like this. 
 
Register           Data  Notes 

0012FFB0   0012FFE0    Pointer to next SEH record 
0012FFB4   00401280    SE handler 
0012FFE0   FFFFFFFF   End of SEH chain 
0012FFE4   7C8399F3    SE handler 
 
As you can see, the first registration, who's handler is at 
0x00401280, is located within this applications address space.  



 

Therefore, it’s safe to assume this executable has its own defined 
handlers.  
 
 
 
 

 
Figure 6 – OllyDbg Screenshot of SEH chain in DeclaredSEH.c 

 
 
 Now, I know everyone will hate me for this and anyone who 
has used OllyDbg would know what I skipped going through all this.  
Now that we know how SEH structures are built within the stack, 
OllyDbg does have an ‘SEH Chain’ view that displays all the current 
exception handlers for the running executable. Breaking ahead a bit 
will allow you to see the live SEH Chain upon execution of our code. 

Vulnerabilities in DEP 
 
Breaking stack protection using exception handlers 
 Ah ha! We haven’t been going over all this exception 
handling for no reason.  Abusing the way SEH operates turns out to 
be the one of the least time consuming ways to evade DEP and 
allow our arbitrary code to run. 
 The flaw allowing for this exists in the way the system 
checks the exception handler’s pointer against the authoritative 
table.  If the exception handlers address is outside the address range 
of any loaded module, than it is executed anyways.  That is, if the 
address is within a module currently in memory, but that module is 
not loaded into the current executable, than the instructions at that 
address are executed.   
 
Figure 7 – OllyDbg Screenshot of DeclaredSEH.c loaded modules 

 
 
 For example, let’s take our DeclaredSEH.c and open it up in 
OllyDbg again.  Opening the Executable Modules window, we can 
see not many modules are loaded in this application.  Excluding 
kernel32 and ntdll, anyone familiar with win32 programming and 
come up with a list of modules off the top of their head that are sure 
to be loaded somewhere else besides within our target. 
 
user32.dll, shell32.dll, gdi32.dll, ws2_32.dll, ws2help.dll, unicode.nls, 
advapi32.dll 
  

And that is just to name a few. Needless to say, many of 
these system libraries that we can almost be certain of being loaded 
are available.   
 
 
 



 

Loading Data Directly into the Heap 
 This method if attack is frankly very straightforward, very 
simple, and rather disappointing considering the time we can see 
Microsoft put into these protections.  Upon authenticating security 
handler codes against the .data section, there is a small exclusion 
before the actual check occurs.  If the address of the handler is 
within the heap, the address isn’t authenticated, and execution flows 
just as if it was any other SEH handler redirect.  This is highly 
application independent however, and strictly depends on 3 factors.  
 

A. You must be able to get buffer data into the heap.  Excluding 
shellcode evasion methods and search methods, this means 
being able to get a working shellcode into a heap buffer.  In 
many cases, this is not possible. 

B. You must be able to accurately predict the address this 
buffer will be placed at in the heap.  

C. If the area in which you are deploying your payload on the 
heap is not executable, there is no way for your code to run. 

 
Aside from these mitigating factors, it is completely possible to 

evade DEP completely by using the heap as your buffer location and 
just using the overwrite buffer to access the SEH. 
 
Double Cookie Overwrite 
 Luckily for us, in certain scenarios we may actually be able 
to avoid all this DEP wonderfulness by just being able to assign our 
own stack cookies in the canary location and the authoritative table, 
in essence bypassing the whole purpose of this configuration to 
begin with.   
 
Function Pointer Overwrites 
 This method is again one of our more circumstantial 
methods in which to gain control of execution.  However, you would 
be surprised how many function pointers actual exist within an 
application.  Our general objective here is to find a function pointer 
that we can say with a degree of certainty will be used after our 
payload has already been written to memory.  
  
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Appendix 
 
Appendix 1 – vuln.c 
#include <stdio.h> 
 
int main(int argc, char *argv[]) { 
 char buffer[200]; 
 strcpy(buffer, argv[1]); 
 return(0); 
} 

 
Appendix 2 – _EXCEPTION_REGISTRATION structure 
typedef struct _EXCEPTION_REGISTRATION { 
 _EXCEPTION_REGISTRATION *next; 
 PEXCEPTION_HANDLER handler; 
} EXCEPTION_REGISTRATION, *PEXCEPTION_REGISTRATION; 

 
Appendix 3 – Stack Cookie Generation 
(This code is from David Litchfield’s paper, Reference 1) 
#include <stdio.h> 
#include <windows.h> 
 
int main(int argc, char *argv[]) { 
 FILETIME ft; 
 unsigned int Cookie=0; 
 unsigned int tmp=0; 
 unsigned int *ptr=0; 
 LARGE_INTEGER perfcount; 
 
 GetSystemTimeAsFileTime(&ft); 
 Cookie = ft.dwHighDateTime ^ ft.dwLowDateTime; 
 Cookie = Cookie ^ GetCurrentProcessId(); 
 Cookie = Cookie ^ GetCurrentThreadId(); 
 Cookie = Cookie ^ GetTickCount(); 
 QueryPerformanceCounter(&perfcount); 
 
 ptr = (unsigned int)&perfcount; 
 tmp = *(ptr+1) ^ *ptr; 
 Cookie = Cookie ^ tmp; 
 
 printf("Cookie: %.8X\n",Cookie); 
 return 0; 
} 

 
Appendix 4 – DeclaredSEH.c 
#include <stdio.h> 
#include <windows.h> 
 
int main(int argc, char *argv[]) { 
 char buffer[200]; 
 
  
 __try { 
  strcpy(buffer, argv[1]); 
 } __except(GetExceptionCode()) { 
  printf("Exception Raised\n\n"); 
 } 
 
 
 return 0; 
} 
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