

Exploitation in the ‘New’ Win32 Environment
Basics of DEP / Stack Protection Evasion in Windows XP SP2/Windows 2003

Walter Pearce
Computer Security Consultant

IOActive Inc.

Prologue
Over the past three years, there has been a significant shift

in security architecture and priority throughout the industry.
Consequently, the research and development areas of the industry
have drastically changed as well; In a nutshell, leaving much to be
desired. Only five years ago, an abundance of buffer overflow
articles, worms, exploits, and advances in general were the norm.
Everyone knew the basics when it came to writing an exploit, and
everyone wrote a paper on it.

Today, to put it lightly, that is no longer the case. Although
Unix based exploitation remains largely the same (with the exception
of StackGuard and the like); Win32 auditing, exploitation and
research has become far, far more complex. With the release of
Windows XP SP2 and Windows 2003, everything moved to a new
level. The sun had set for the ‘simple’ core system exploits with the
advent of DEP (Data Execution Protection) and the implementation
of a host of new security measures within the new compilers, not
even considering the .NET Framework and the implications this has
had on development as a whole.

This paper is meant to focus on these changes in
architecture made to prevent exploitation of win32 processes, and
how to break them. After a long search for articles, papers,
examples, and other resources covering this area, I found the
internet rather lacking. It does not seem (in my eyes) to be a well
covered area. To be more specific, the only easily locatable and
detailed writing on this specific subject I was able to find was David
Litchfield’s “Defeating the Stack Based Buffer Overflow Prevention
Mechanism of Microsoft Windows 2003 Server.” (Reference 1). I
certainly may have missed other articles on the subject matter, and I
apologize in advance for any repetitiveness in this article with others
(many of the topics covered here are re-explanations of David
Litchfield’s paper).
 Due to this, I felt it appropriate to re-iterate the things I have
learned in the general areas of Win32 exploitation, and go over in
detail the techniques to evade stack protection in Windows XP SP2
and Windows 2003.

What You Need
 Lets not forget none of this happens out of thin air (snicker
snicker?), and I’ve compiled a list of the applications and general
knowledge I’ll assume you have (and that I use in my examples and
explanations) to make it through this eccentric piece of text alive.

Our Toys:

- A Win32 C/C++ Compiler (I’m using Visual Studio .NET
2005, so all examples will be as such)

- OllyDbg or an equivalently bad-looking debugger that
serves its purpose that you are so heart-warmingly
dedicated to. (SoftIce or WinDbg may do, but don’t expect
instructions on how to use them)

Optional Goodies which are cool to have anyways:
- The Win32 NASM Assembler
- IDA Pro always comes in handy for disassembling an

application (Then again, if you have this either its an illegal
copy or you probably know more about all this than me)

- 1(or more) Brain(s)
- Microsoft’s Vadump.exe Utility

Perfect. Now you have everything applications wise you’ll need
to follow my wonderful step-by-step explanations. Next, here are
some basic topics that I will be covering, but not in any sort of
real detail past self-reinforcement. I recommend you read all the
references at the end of this paper if you require any ‘freshening
up’ in these areas.

- Understanding of Assembly in the Win32 Environment
- General memory stack layout and structure
- How buffer overflows work (If you don’t know this, I don’t

think you should be here)
- SEH Overwrite Exploitation
- Anything else that I can’t think of you’ll obviously notice

I’ll re-iterate, references are available at the bottom for all these
topics and anything else I thought was good pertaining to the subject
at hand.

Explanation of Win32 Buffer Overflows

Back to Basics

The basics of performing successful buffer overflows in
Windows applications is practically the same as with Unix based
overflows. There are only a few slight differences in Windows rather
than Unix when it comes to the basics. I only mention this because I
(and I would think most anyone that looked into security at all),
began learning buffer overflows and the like in Unix. I know I did, and
I believe it makes sense making such a relationship for anyone out
there who may be in the same boat as I was. So, Let’s dive right in
shall we?

Appendix 1 - Vuln1.c
#include <stdio.h>

int main(int argc, char *argv[]) {
 char buffer[200];

 strcpy(buffer, argv[1]);

 return(0);
}

Obviously this example is pretty simple. I just want to point out a few
differences. In Unix, an exploit for this would be rather simple,
regardless of which approach you took. The simplest and generally
most understood method in Unix is:

- Overflow the buffer and overwrite the routine address of the

routine with an address within our buffer

- Upon the functioning calling the RET opcode, EIP is
switched to our supplied address, thus rendering control of
execution flow to us (Our goal, yippee)

- Within the buffer, we have executable shellcode that is then
ran and gives us our shell, connectback, whatever we want.

Yes, yes, I know. This is all very basic. However, within Windows the
approach is slightly different for the sake of simplicity. Rather than
overwriting EIP with an address within our buffer, it Is simpler to point

to an address of code within a loaded library that is static. Meaning,
we point to an external library that will execute our shellcode for us.
Let’s see a pretty picture of this.

Figure 1 - illustration of compromised execution path

Above, in my excellent paint.exe representation of what I just
previously explained, you can see the flow of execution with the red
lines. The Return Address points to the address of the ‘JMP ESP’
instruction inside a loaded library (Which are only compile-
dependant, so addresses are static across boots and versions). The
ESP register, for my picture, happens to be the beginning of our
buffer. When this JMP opcode is executed, it bounces back to our
buffer, thus beginning execution on our code in a rather elegant way.
This method of returning to loaded libraries and jumping back allows
for a much larger range of attacks; be it tiny payloads by calling
already loaded and located functions, or as you’ll see later, to more
devious means.
 Note however, that for the sake of this example ESP was set
to the beginning of our buffer. The majority of the time, this sadly is

not the case. It may take a certain amount of data manipulation and
search to find the correct opcode in combination with the right
register to be able to get back somewhere in our buffer. This will be
covered in further detail later on.

SEH Unveiled

SEH, or Structured Exception Handling, has become a
rather useful tool in performing exploits in the windows environment.
It now only allows for more attack vectors, but also cross-platform
and more reliable exploits in general (Uh oh!). Exceptions allow us
even further flexibility in exploiting applications, and should be
understood before you try to make use of it.

Within the Win32 Framework, exceptions are thrown
whenever an error or illegal instruction occurs, be it thrown from the
user or the operating system itself. Programmatically, when an
exception is thrown, the application has a chance to catch the
exception and deal with it, and thus allow the program to continue
execution. If no user-defined exception handlers are defined, than
the operating system takes over, catching the exception, killing the
process and giving you that wonderful ‘problem’ window. Send Error
Report indeed, Dr. Watson (hah?).

Figure 2 - jaynus breaking stuff

 Now, seeing this window is usually a good thing in our field,
oddly enough. But its time to understand what exactly causes this
voodoo magic window to appear.

Inside any given Win32 process, the active stack now
contains pointers for these new-fangled exception handlers. These
are used and referenced by the system on the event of an illegal
operation. By default, these pointers point to system handlers, thus
giving us our error message. The references are good old struct’s,
defined as follows.

Appendix 2 - _EXCEPTION_REGISTRATION Structure
typedef struct _EXCEPTION_REGISTRATION {

 _EXCEPTION_REGISTRATION *next;

 PEXCEPTION_HANDLER handler;

} EXCEPTION_REGISTRATION, *PEXCEPTION_REGISTRATION;

The exception handlers for any given process are always

organized in a linked list ‘chain’. That is, each record contains a
pointer to the next record (_EXCEPTION_REGISTRATION *next),
the terminating records pointer containing 0xFFFFFFFF.

Figure 3 – OllyDbg Screenshot of vuln1.exe’s stack

The chain of handlers is always on the bottom of the stack,

conveniently enough labeled for us by OllyDbg. In the actual stack,
this data is stored in 16-byte succession and ending with when the
pointer is terminating. In Figure 3, you can see the OllyDbg output of
the stack, with the labeled ‘End of SEH chain’ at 0012ffe0. So, we
can see directly below that terminator in the next 8 bytes at 0012ffe4,
the default handler for our vuln1.c executable is a pointer to
7c8399f3, which so happens to reside in the loaded address space
of kernel32.dll and is the default exception handler for this
compilation. Of course, this is within an application with no defined
exception handlers, thus the compiled defaults set in. In other
circumstances, the exception chain will grow longer, containing more
handlers for different operations.

Figure 4 – Illustration of SEH Chain location on the stack

 All that mumbo-jumbo aside, it is perfectly possible to abuse
this handler for a multitude of purposes, the most obvious being
taking control of the execution flow of the program. If we can get any
type of exception to be thrown (an illegal EIP from an overflow?) then
this exception handler will be called. What is to happen if we
overwrite the stack further than the buffer, past the return address,
and onto the SEH chain? We can use the same jump back method
discussed above, thus dropping the chain of execution into our
buffer.

Returning with instructions inside loaded modules
As I mentioned before, I would come back to this jump back

method from loaded libraries. Now I am. Finding these instructions
somewhere inside all the loaded library modules could be a very
monotonous task without some sort of automation. Using your
debugger to search the loaded modules for the appropriate JMP,
call, or any other series of instructions you need to call is one way of
doing it, but usually only when something a bit more custom is
required. Microsoft’s Vadump.exe (Link 1) is also capable of serving
this purpose, dumping the address space of the specified process
PID. For a bit faster and user-friendly approach however, one can
always search the Metasploit Opcode Database, which contains a
database of the global Windows DLL’s useful instructions across
multiple versions.

As I said, we are not always lucky enough to have a register
pointing directly at our buffer or shellcode. In these cases, we would
need to return to more specific instructions to get to our actual
shellcode. When the exception handler pointer or return address is
being executed, let us say for instance the CPU Registers look like
this:

Register Address

EAX 00000000
ECX 0012FFB0
EDX 41414141
EBX 41414141
ESP 0012FFC4
EBP 0012FFF0
ESI FFFFFFFF
EDI 7C910738
EIP 41414141

As you can see above, this example is as if we have just overflowed
our application. The EIP and EBX have been overwritten by our
buffer data, and the rest of the registers are however the application
left them. These two registers were overwritten with the execution of
the return code, and we would have conventional control of the
process via the EIP. However, let us pretend our stack looks like the
following and we can go a step further with SEH usage.

Address Data

0012FFC4 00000000 <------- Address of ESP
0012FFC8 459c2fee <------- Data
0012FFCC 41414141 <------- beginning of our buffer
0012FFC0 41414141
0012FFC4 41414141

This is a rather rudimentary example, but as you can see if we were
to point our return address or exception handler at a JMP ESP
instruction, it wouldn’t do us any good because the actual address
ESP references (0012FFC4) is not part of our stack. Therefore, we
would want to use another instruction from our libraries that would
give us an appropriate location. In this case, it would be ideal to find
a CALL [ESP + 8], because our stack begins 8 bytes below the
address ESP references. Simple enough, yes? Yes. But with the
new protection mechanisms in Windows XP SP2 and Windows
2003, we have to change our methods, and sadly it does get a bit
more complicated.

New Protection Mechanisms in Windows XP
SP2 and Windows 2003 and
Visual Studio .NET

Overview
 With the advent of Windows 2003, a number of new
mechanisms were created in an attempt to thwart security
vulnerabilities and disable the attack vectors we use today. Although
I applaud Microsoft for this attempt, it is flawed. DEP (Data
Execution Protection) was implemented as a security measure in
Windows 2003, Windows XP, and also is the same basic
mechanisms behind Visual Studio .NET’s /GS compilation flag. As it
was so daftly said before me, “Currently the stack protection built into
Windows 2003 can be defeated”, all it takes is a lot of ingenuity and
a new perspective on things. I’m getting ahead of myself however.
We will start with the basics.

Stack Cookies
 First and most importantly, a type of ‘Cookie’ (or canary, or
whatever you want to call it) has been added to the stack. The

cookie is an 8-byte unsigned int pseudo-randomly generated value
put directly in front of the return address. When I say ‘pseudo-
random’, don’t think of guessing it. It’s a virtual impossibility. If you’re
interested, see Appendix 2 on how these cookies are actually
generated. This cookie is then saved in a secure version in the .data
section of the executable upon execution; whenever a return address
is called, this cookie is authenticated against this saved version. If
these cookies do not match, then a security exception is thrown and
the application is stopped.

Figure 5 – Illustration of Cookie location on the stack

 This all boils down to one conclusion; when the buffer is
overrun in an attempt to gain control of execution, this stack cookie is
going to have to be overwritten on the way to the return address or
the SEH chain, and the cookie will be checked before any execution
of our code is done, and the process will be terminated. Surprisingly
enough this comes with little affect to processing times and has
certainly been well implemented by Microsoft.

When a cookie is all alone
 David Litchfield best covered this topic in his paper in
Reference 1, but I believe it is best to rehash from a different
perspective. Let’s take a deeper look into what happens when the
cookie is not validated by its authorized sister in the .data section of
the stack.
 When the discrepancy is first detected, the system checks
for a security handler in the .data section of the executable. In most

instances this is not defined, but if it is this handler processes first
and then the exception is handled and nothing is given to the
system. If, and most commonly, no handler is defined, the
UnhandledExceptionFilter method is called. This eventually leads to
the generic error message for all unhandled exceptions in win32
applications, where the ReportFault method is called and the window
in Figure 2 is displayed.

Authentication Tables
 In DEP protected executables, and executables compiled
with the /GS flag, authenticated cookie values are saved in the .data
section of the header, as well as authenticate saved addresses to
the security handlers of the binary. That is, it saves a list of the
pointers to registered exception handlers, and checks the address of
the handler against this list before executing. If the address is not in
the list, it does not execute it.

Checking for security handlers in practice

Appendix 4 – DeclaredSEH.c
#include <stdio.h>
#include <windows.h>

int main(int argc, char *argv[]) {
 char buffer[200];

 __try {
 strcpy(buffer, argv[1]);
 } __except(GetExceptionCode()) {
 printf("Exception Raised\n\n");
 }

 return 0;
}

 Compiling the code snippet above, we can search the .data
section of memory with OllyDbg for these authenticated handler
addresses, being that we have defined an exception handler in our
application. This only comes into play when an exception handler
has been declared by the programmers, which is under normal

circumstances a rare case. Nonetheless, knowing the mechanics
behind the exceptions is a must to truly understand what is going on.

 For example, compile this snippet using Visual Studio .NET.
Open it for debugging in OllyDbg, without any arguments. We don’t
want any arguments because this will result in an exception being
thrown inside strcpy because argv[1] is an empty pointer, therefore
an access violation occurs.
 Inside OllyDbg, open the memory window. At the bottom,
there is the data block section of the main thread. In this section of
memory, we can see at the very top is “(Pointer to SEH Chain)”.
This is the executables storage location for the address of the first
item in the SEH Chain.
 Now, this is only the default location upon memory load of
the application. We want to see if this executable has its own
declared exception handlers, and not just the default win32. If the
executable has its own declared handlers, we can watch this data
location for changes to see when it loads the SEH Chain, and
whether the address is local to the process. Right click on the
Pointer address, and set a ‘Hardware, on write’ breakpoint, and then
run the application.
 The application will break when the address in memory is
written too many times; just continue running through it until we see
our instruction code has broken out of the initial windows initialization
and into our actual code block. In this instance, once the pointer to
the SEH chain has changed to 0x0012FFB0, stop running the
application. Go ahead and switch to the active stacks memory
window and go to this address. As you can see in Figure 6, this
address contains a _EXCEPTION_REGISTRATION instance, which
when you follow each point to the next SEH record, the chain looks
like this.

Register Data Notes

0012FFB0 0012FFE0 Pointer to next SEH record
0012FFB4 00401280 SE handler
0012FFE0 FFFFFFFF End of SEH chain
0012FFE4 7C8399F3 SE handler

As you can see, the first registration, who's handler is at
0x00401280, is located within this applications address space.

Therefore, it’s safe to assume this executable has its own defined
handlers.

Figure 6 – OllyDbg Screenshot of SEH chain in DeclaredSEH.c

 Now, I know everyone will hate me for this and anyone who
has used OllyDbg would know what I skipped going through all this.
Now that we know how SEH structures are built within the stack,
OllyDbg does have an ‘SEH Chain’ view that displays all the current
exception handlers for the running executable. Breaking ahead a bit
will allow you to see the live SEH Chain upon execution of our code.

Vulnerabilities in DEP

Breaking stack protection using exception handlers
 Ah ha! We haven’t been going over all this exception
handling for no reason. Abusing the way SEH operates turns out to
be the one of the least time consuming ways to evade DEP and
allow our arbitrary code to run.
 The flaw allowing for this exists in the way the system
checks the exception handler’s pointer against the authoritative
table. If the exception handlers address is outside the address range
of any loaded module, than it is executed anyways. That is, if the
address is within a module currently in memory, but that module is
not loaded into the current executable, than the instructions at that
address are executed.

Figure 7 – OllyDbg Screenshot of DeclaredSEH.c loaded modules

 For example, let’s take our DeclaredSEH.c and open it up in
OllyDbg again. Opening the Executable Modules window, we can
see not many modules are loaded in this application. Excluding
kernel32 and ntdll, anyone familiar with win32 programming and
come up with a list of modules off the top of their head that are sure
to be loaded somewhere else besides within our target.

user32.dll, shell32.dll, gdi32.dll, ws2_32.dll, ws2help.dll, unicode.nls,
advapi32.dll

And that is just to name a few. Needless to say, many of
these system libraries that we can almost be certain of being loaded
are available.

Loading Data Directly into the Heap
 This method if attack is frankly very straightforward, very
simple, and rather disappointing considering the time we can see
Microsoft put into these protections. Upon authenticating security
handler codes against the .data section, there is a small exclusion
before the actual check occurs. If the address of the handler is
within the heap, the address isn’t authenticated, and execution flows
just as if it was any other SEH handler redirect. This is highly
application independent however, and strictly depends on 3 factors.

A. You must be able to get buffer data into the heap. Excluding
shellcode evasion methods and search methods, this means
being able to get a working shellcode into a heap buffer. In
many cases, this is not possible.

B. You must be able to accurately predict the address this
buffer will be placed at in the heap.

C. If the area in which you are deploying your payload on the
heap is not executable, there is no way for your code to run.

Aside from these mitigating factors, it is completely possible to

evade DEP completely by using the heap as your buffer location and
just using the overwrite buffer to access the SEH.

Double Cookie Overwrite
 Luckily for us, in certain scenarios we may actually be able
to avoid all this DEP wonderfulness by just being able to assign our
own stack cookies in the canary location and the authoritative table,
in essence bypassing the whole purpose of this configuration to
begin with.

Function Pointer Overwrites
 This method is again one of our more circumstantial
methods in which to gain control of execution. However, you would
be surprised how many function pointers actual exist within an
application. Our general objective here is to find a function pointer
that we can say with a degree of certainty will be used after our
payload has already been written to memory.

Appendix

Appendix 1 – vuln.c
#include <stdio.h>

int main(int argc, char *argv[]) {
 char buffer[200];
 strcpy(buffer, argv[1]);
 return(0);
}

Appendix 2 – _EXCEPTION_REGISTRATION structure
typedef struct _EXCEPTION_REGISTRATION {
 _EXCEPTION_REGISTRATION *next;
 PEXCEPTION_HANDLER handler;
} EXCEPTION_REGISTRATION, *PEXCEPTION_REGISTRATION;

Appendix 3 – Stack Cookie Generation
(This code is from David Litchfield’s paper, Reference 1)
#include <stdio.h>
#include <windows.h>

int main(int argc, char *argv[]) {
 FILETIME ft;
 unsigned int Cookie=0;
 unsigned int tmp=0;
 unsigned int *ptr=0;
 LARGE_INTEGER perfcount;

 GetSystemTimeAsFileTime(&ft);
 Cookie = ft.dwHighDateTime ^ ft.dwLowDateTime;
 Cookie = Cookie ^ GetCurrentProcessId();
 Cookie = Cookie ^ GetCurrentThreadId();
 Cookie = Cookie ^ GetTickCount();
 QueryPerformanceCounter(&perfcount);

 ptr = (unsigned int)&perfcount;
 tmp = *(ptr+1) ^ *ptr;
 Cookie = Cookie ^ tmp;

 printf("Cookie: %.8X\n",Cookie);
 return 0;
}

Appendix 4 – DeclaredSEH.c
#include <stdio.h>
#include <windows.h>

int main(int argc, char *argv[]) {
 char buffer[200];

 __try {
 strcpy(buffer, argv[1]);
 } __except(GetExceptionCode()) {
 printf("Exception Raised\n\n");
 }

 return 0;
}

References

1. Defeating the Stack Based Buffer Overflow Prevention Mechanism of Microsoft Windows 2003 Server
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf

 2. Phrack Issue 63, Article 15 - NT Shellcode Prevention Demystified

 http://www.phrack.org/show.php/phrack/5/phrack/28/show.php?p=63&a=15

 3. Security Forest Wiki
 http://www.securityforest.com

Links
1. Microsoft’s vadump.exe

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/vadump-o.asp

2. Metasploit Opcode Database

http://metasploit.com/users/opcode/msfopcode.cgi

